Skip to main content
Top

2021 | OriginalPaper | Chapter

Towards Synthetic Multivariate Time Series Generation for Flare Forecasting

Authors : Yang Chen, Dustin J. Kempton, Azim Ahmadzadeh, Rafal A. Angryk

Published in: Artificial Intelligence and Soft Computing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the limiting factors in training data-driven, rare-event prediction algorithms is the scarcity of the events of interest resulting in an extreme imbalance in the data. There have been many methods introduced in the literature for overcoming this issue; simple data manipulation through undersampling and oversampling, utilizing cost-sensitive learning algorithms, or by generating synthetic data points following the distribution of the existing data. While synthetic data generation has recently received a great deal of attention, there are real challenges involved in doing so for high-dimensional data such as multivariate time series. In this study, we explore the usefulness of the conditional generative adversarial network (CGAN) as a means to perform data-informed oversampling in order to balance a large dataset of multivariate time series. We utilize a flare forecasting benchmark dataset, named SWAN-SF, and design two verification methods to both quantitatively and qualitatively evaluate the similarity between the generated minority and the ground-truth samples. We further assess the quality of the generated samples by training a classical, supervised machine learning algorithm on synthetic data, and testing the trained model on the unseen, real data. The results show that the classifier trained on the data augmented with the synthetic multivariate time series achieves a significant improvement compared with the case where no augmentation is used. The popular flare forecasting evaluation metrics, TSS and HSS, report 20-fold and 5-fold improvements, respectively, indicating the remarkable statistical similarities, and the usefulness of CGAN-based data generation for complicated tasks such as flare forecasting.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
7.
go back to reference Ahmadzadeh, A., et al.: How to train your flare prediction model: revisiting robust sampling of rare events. arXiv e-prints arXiv:2103.07542, March 2021 Ahmadzadeh, A., et al.: How to train your flare prediction model: revisiting robust sampling of rare events. arXiv e-prints arXiv:​2103.​07542, March 2021
10.
go back to reference Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, ser. NIPS 2014. Cambridge, MA, USA, pp. 2672–2680. MIT Press (2014). [Online] https://doi.org/10.5555/2969033.2969125 Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, ser. NIPS 2014. Cambridge, MA, USA, pp. 2672–2680. MIT Press (2014). [Online] https://​doi.​org/​10.​5555/​2969033.​2969125
11.
go back to reference Radford, A., et al.: Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, vol. abs/1511.06434 (2016) Radford, A., et al.: Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, vol. abs/1511.06434 (2016)
13.
go back to reference Chen, X., et al.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, ser. NIPS 2016. Red Hook, NY, USA: Curran Associates Inc., pp. 2180–2188 (2016). [Online] https://doi.org/10.5555/3157096.3157340 Chen, X., et al.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, ser. NIPS 2016. Red Hook, NY, USA: Curran Associates Inc., pp. 2180–2188 (2016). [Online] https://​doi.​org/​10.​5555/​3157096.​3157340
15.
go back to reference Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation with recurrent conditional GANs (2017). arXiv:1706.02633 Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation with recurrent conditional GANs (2017). arXiv:​1706.​02633
16.
go back to reference Mogren, O.: C-RNN-GAN: a continuous recurrent neural network with adversarial training. In: Constructive Machine Learning Workshop (CML) at NIPS 2016 (2016) Mogren, O.: C-RNN-GAN: a continuous recurrent neural network with adversarial training. In: Constructive Machine Learning Workshop (CML) at NIPS 2016 (2016)
17.
go back to reference Yoon, J., et al.: Time-series generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 5508–5518 (2019) Yoon, J., et al.: Time-series generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 5508–5518 (2019)
24.
go back to reference Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org
25.
go back to reference Yale, A., et al.: Assessing privacy and quality of synthetic health data. In: Proceedings of the Conference on Artificial Intelligence for Data Discovery and Reuse, ser. AIDR 2019. New York, NY, USA. Association for Computing Machinery (2019). [Online] https://doi.org/10.1145/3359115.3359124 Yale, A., et al.: Assessing privacy and quality of synthetic health data. In: Proceedings of the Conference on Artificial Intelligence for Data Discovery and Reuse, ser. AIDR 2019. New York, NY, USA. Association for Computing Machinery (2019). [Online] https://​doi.​org/​10.​1145/​3359115.​3359124
26.
go back to reference Hanssen, A., Kuipers, W.: On the Relationship Between the Frequency of Rain and Various Meteorological Parameters: (with Reference to the Problem Ob Objective Forecasting), ser. Koninkl. Nederlands Meterologisch Institut. Mededelingen en Verhandelingen. Staatsdrukkerij- en Uitgeverijbedrijf (1965). [Online] https://books.google.com/books?id=nTZ8OgAACAAJ Hanssen, A., Kuipers, W.: On the Relationship Between the Frequency of Rain and Various Meteorological Parameters: (with Reference to the Problem Ob Objective Forecasting), ser. Koninkl. Nederlands Meterologisch Institut. Mededelingen en Verhandelingen. Staatsdrukkerij- en Uitgeverijbedrijf (1965). [Online] https://​books.​google.​com/​books?​id=​nTZ8OgAACAAJ
Metadata
Title
Towards Synthetic Multivariate Time Series Generation for Flare Forecasting
Authors
Yang Chen
Dustin J. Kempton
Azim Ahmadzadeh
Rafal A. Angryk
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87986-0_26

Premium Partner