Skip to main content
Top

2019 | OriginalPaper | Chapter

15. Towards the Integration of Metabolic Network Modelling and Machine Learning for the Routine Analysis of High-Throughput Patient Data

Authors : Maria Pires Pacheco, Tamara Bintener, Thomas Sauter

Published in: Automated Reasoning for Systems Biology and Medicine

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The decreasing cost of high-throughput technologies allows to consider their use in healthcare and medicine. To prepare for this upcoming revolution, the community is assembling large disease-dedicated datasets such as TCGA or METABRIC. These datasets will serve as references to compare new patient samples to in order to assign them to a predefined category (i.e. ‘patients associated with poor prognosis’). Some problems affecting the downstream analysis remain to be solved, the bottleneck is no longer data generation itself but the integration of the existing datasets with the present knowledge. Constraint-based modelling, that only requires the setting of a few parameters, became popular for the integration of high-throughput data in a metabolic context. Notably, context-specific building algorithms that extract a subnetwork from a reference network are largely used to study metabolic changes in various diseases. Reference networks are composed of canonical pathways while extracted subnetworks include only active pathways in the context of interest based on high-throughput data. Even though these algorithms can be part of automated pipelines, to be applied by clinicians, the model-building pipelines must be coupled to a standardized semi-automated analysis workflow based on machine learning approaches to avoid bias and reduce the cost of diagnostics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8(5):e1002518CrossRef Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8(5):e1002518CrossRef
2.
go back to reference Angione C, Lió P (2015) Predictive analytics of environmental adaptability in multi-omic network models. Sci Rep 5:15147CrossRef Angione C, Lió P (2015) Predictive analytics of environmental adaptability in multi-omic network models. Sci Rep 5:15147CrossRef
3.
go back to reference Asgari Y, Zabihinpour Z, Salehzadeh-Yazdi A, Schreiber F, Masoudi-Nejad A (2015) Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation. Genomics 105(5):275–281CrossRef Asgari Y, Zabihinpour Z, Salehzadeh-Yazdi A, Schreiber F, Masoudi-Nejad A (2015) Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation. Genomics 105(5):275–281CrossRef
4.
go back to reference Askari BS, Krajinovic M (2010) Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Curr Genomics 11(8):578–583 Askari BS, Krajinovic M (2010) Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Curr Genomics 11(8):578–583
5.
go back to reference Aurich MK, Fleming RM, Thiele I (2017) A systems approach reveals distinct metabolic strategies among the NCI-60 cancer cell lines. PLoS Comput Biol 13(8):e1005698CrossRef Aurich MK, Fleming RM, Thiele I (2017) A systems approach reveals distinct metabolic strategies among the NCI-60 cancer cell lines. PLoS Comput Biol 13(8):e1005698CrossRef
6.
go back to reference Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(1) Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(1)
7.
go back to reference Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D et al (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607CrossRef Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D et al (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607CrossRef
8.
go back to reference Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI, Ebright RY, Stewart ML, Ito D, Wang S et al (2013) An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154(5):1151–1161CrossRef Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI, Ebright RY, Stewart ML, Ito D, Wang S et al (2013) An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154(5):1151–1161CrossRef
9.
go back to reference Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4(5):e1000082MathSciNetCrossRef Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4(5):e1000082MathSciNetCrossRef
10.
go back to reference Boehm JS, Golub TR (2015) An ecosystem of cancer cell line factories to support a cancer dependency map. Nat Rev Genet 16(7):373CrossRef Boehm JS, Golub TR (2015) An ecosystem of cancer cell line factories to support a cancer dependency map. Nat Rev Genet 16(7):373CrossRef
11.
go back to reference Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15(2):107 Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15(2):107
12.
go back to reference Clarke C, Doolan P, Barron N, Meleady P, O’Sullivan F, Gammell P, Melville M, Leonard M, Clynes M (2011) Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. J Biotechnol 155(3):350–359CrossRef Clarke C, Doolan P, Barron N, Meleady P, O’Sullivan F, Gammell P, Melville M, Leonard M, Clynes M (2011) Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. J Biotechnol 155(3):350–359CrossRef
13.
go back to reference Conde M, do Rosario P, Sauter T, Pfau T (2016) Constraint based modeling going multicellular. Front Mol Biosci 3:3 Conde M, do Rosario P, Sauter T, Pfau T (2016) Constraint based modeling going multicellular. Front Mol Biosci 3:3
14.
go back to reference Consortium GP et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073 Consortium GP et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073
15.
go back to reference Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352CrossRef Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352CrossRef
16.
go back to reference Diener C, Resendis-Antonio O (2016) Personalized prediction of proliferation rates and metabolic liabilities in cancer biopsies. Front Physiol 7 Diener C, Resendis-Antonio O (2016) Personalized prediction of proliferation rates and metabolic liabilities in cancer biopsies. Front Physiol 7
17.
go back to reference Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci 104(6):1777–1782CrossRef Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci 104(6):1777–1782CrossRef
18.
go back to reference Estévez SR, Nikoloski Z (2015) Context-specific metabolic model extraction based on regularized least squares optimization. PloS One 10(7):e0131875CrossRef Estévez SR, Nikoloski Z (2015) Context-specific metabolic model extraction based on regularized least squares optimization. PloS One 10(7):e0131875CrossRef
19.
go back to reference Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7(1):501CrossRef Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7(1):501CrossRef
20.
go back to reference Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A et al (2010) Cosmic: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 39(suppl\(\_\)1):D945–D950CrossRef Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A et al (2010) Cosmic: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 39(suppl\(\_\)1):D945–D950CrossRef
21.
go back to reference Franke RM, Scherkenbach LA, Sparreboom A (2009) Pharmacogenetics of the organic anion transporting polypeptide 1A2CrossRef Franke RM, Scherkenbach LA, Sparreboom A (2009) Pharmacogenetics of the organic anion transporting polypeptide 1A2CrossRef
22.
go back to reference Frejno M, Chiozzi RZ, Wilhelm M, Koch H, Zheng R, Klaeger S, Ruprecht B, Meng C, Kramer K, Jarzab A et al (2017) Pharmacoproteomic characterisation of human colon and rectal cancer. Mol Syst Biol 13(11):951CrossRef Frejno M, Chiozzi RZ, Wilhelm M, Koch H, Zheng R, Klaeger S, Ruprecht B, Meng C, Kramer K, Jarzab A et al (2017) Pharmacoproteomic characterisation of human colon and rectal cancer. Mol Syst Biol 13(11):951CrossRef
23.
go back to reference Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu F, Yang H, Ch’ang LY, Huang W, Liu B, Shen Y et al (2003) The international HapMap project. Nature 426(6968):789–796CrossRef Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu F, Yang H, Ch’ang LY, Huang W, Liu B, Shen Y et al (2003) The international HapMap project. Nature 426(6968):789–796CrossRef
24.
go back to reference Goh WWB, Wang W, Wong L (2017) Why batch effects matter in omics data, and how to avoid them. Trends Biotechnol Goh WWB, Wang W, Wong L (2017) Why batch effects matter in omics data, and how to avoid them. Trends Biotechnol
25.
go back to reference Guinney J, Dienstmann R, Wang X, De Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21(11):1350CrossRef Guinney J, Dienstmann R, Wang X, De Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21(11):1350CrossRef
26.
go back to reference Halldorsson S, Rohatgi N, Magnusdottir M, Choudhary KS, Gudjonsson T, Knutsen E, Barkovskaya A, Hilmarsdottir B, Perander M, Mælandsmo GM et al (2017) Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Lett 396:117–129CrossRef Halldorsson S, Rohatgi N, Magnusdottir M, Choudhary KS, Gudjonsson T, Knutsen E, Barkovskaya A, Hilmarsdottir B, Perander M, Mælandsmo GM et al (2017) Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Lett 396:117–129CrossRef
27.
go back to reference Hart T, Brown KR, Sircoulomb F, Rottapel R, Moffat J (2014) Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol Syst Biol 10(7):733CrossRef Hart T, Brown KR, Sircoulomb F, Rottapel R, Moffat J (2014) Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol Syst Biol 10(7):733CrossRef
28.
go back to reference Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, Mis M, Zimmermann M, Fradet-Turcotte A, Sun S et al (2015) High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163(6):1515–1526CrossRef Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, Mis M, Zimmermann M, Fradet-Turcotte A, Sun S et al (2015) High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163(6):1515–1526CrossRef
29.
go back to reference Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278(5340):1064–1068CrossRef Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278(5340):1064–1068CrossRef
30.
go back to reference Hefzi H, Ang KS, Hanscho M, Bordbar A, Ruckerbauer D, Lakshmanan M, Orellana CA, Baycin-Hizal D, Huang Y, Ley D et al (2016) A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst 3(5):434–443CrossRef Hefzi H, Ang KS, Hanscho M, Bordbar A, Ruckerbauer D, Lakshmanan M, Orellana CA, Baycin-Hizal D, Huang Y, Ley D et al (2016) A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst 3(5):434–443CrossRef
31.
go back to reference Heinken A, Sahoo S, Fleming RM, Thiele I (2013) Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4(1):28–40CrossRef Heinken A, Sahoo S, Fleming RM, Thiele I (2013) Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4(1):28–40CrossRef
32.
go back to reference Hillje AL, Beckmann E, Pavlou MA, Jaeger C, Pacheco MP, Sauter T, Schwamborn JC, Lewejohann L (2015) The neural stem cell fate determinant TRIM32 regulates complex behavioral traits. Front Cell Neurosci 9:75CrossRef Hillje AL, Beckmann E, Pavlou MA, Jaeger C, Pacheco MP, Sauter T, Schwamborn JC, Lewejohann L (2015) The neural stem cell fate determinant TRIM32 regulates complex behavioral traits. Front Cell Neurosci 9:75CrossRef
33.
34.
go back to reference Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, Aben N, Gonçalves E, Barthorpe S, Lightfoot H et al (2016) A landscape of pharmacogenomic interactions in cancer. Cell 166(3):740–754CrossRef Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, Aben N, Gonçalves E, Barthorpe S, Lightfoot H et al (2016) A landscape of pharmacogenomic interactions in cancer. Cell 166(3):740–754CrossRef
35.
go back to reference James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer, Berlin James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer, Berlin
36.
go back to reference Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2009) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38(suppl\(\_\)1):D355–D360CrossRef Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2009) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38(suppl\(\_\)1):D355–D360CrossRef
37.
go back to reference Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, Degenhardt J, Mayba O, Gnad F, Liu J et al (2015) A comprehensive transcriptional portrait of human cancer cell lines. Nat Biotechnol 33(3):306–312CrossRef Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, Degenhardt J, Mayba O, Gnad F, Liu J et al (2015) A comprehensive transcriptional portrait of human cancer cell lines. Nat Biotechnol 33(3):306–312CrossRef
38.
go back to reference Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V et al (2010) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39(suppl\(\_\)1):D1035–D1041CrossRef Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V et al (2010) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39(suppl\(\_\)1):D1035–D1041CrossRef
39.
go back to reference Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera MDC, Yusa K (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32(3):267CrossRef Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera MDC, Yusa K (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32(3):267CrossRef
40.
go back to reference Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711CrossRef Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711CrossRef
41.
go back to reference Kotsiantis SB, Zaharakis I, Pintelas P (2007) Supervised machine learning: a review of classification techniques. Emerg Artif Intell Appl Comput Eng 160:3–24 Kotsiantis SB, Zaharakis I, Pintelas P (2007) Supervised machine learning: a review of classification techniques. Emerg Artif Intell Appl Comput Eng 160:3–24
42.
go back to reference Kubens BS, Niggemann B, Zänker KS (2001) Prevention of entrance into G2 cell cycle phase by mimosine decreases locomotion of cells from the tumor cell line SW480. Cancer Lett 162:S39–S47CrossRef Kubens BS, Niggemann B, Zänker KS (2001) Prevention of entrance into G2 cell cycle phase by mimosine decreases locomotion of cells from the tumor cell line SW480. Cancer Lett 162:S39–S47CrossRef
43.
go back to reference Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P (2010) A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 6(1):343CrossRef Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P (2010) A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 6(1):343CrossRef
44.
go back to reference Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15):1200–1205CrossRef Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15):1200–1205CrossRef
45.
go back to reference Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, Cheng JK, Patel N, Yee A, Lewis RA, Eils R et al (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28(12):1279CrossRef Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, Cheng JK, Patel N, Yee A, Lewis RA, Eils R et al (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28(12):1279CrossRef
46.
go back to reference Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16(6):321–332CrossRef Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16(6):321–332CrossRef
47.
go back to reference Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM, Sotgia F, Lisanti MP, Frank PG (2011) Role of cholesterol in the development and progression of breast cancer. Am J Pathol 178(1):402–412CrossRef Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM, Sotgia F, Lisanti MP, Frank PG (2011) Role of cholesterol in the development and progression of breast cancer. Am J Pathol 178(1):402–412CrossRef
48.
go back to reference Long MR, Ong WK, Reed JL (2015) Computational methods in metabolic engineering for strain design. Curr Opin Biotechnol 34:135–141CrossRef Long MR, Ong WK, Reed JL (2015) Computational methods in metabolic engineering for strain design. Curr Opin Biotechnol 34:135–141CrossRef
49.
go back to reference López-Agudelo VA, Baena A, Ramirez-Malule H, Ochoa S, Barrera LF, Ríos-Estepa R (2017) Metabolic adaptation of two in silico mutants of mycobacterium tuberculosis during infection. BMC Syst Biol 11(1):107CrossRef López-Agudelo VA, Baena A, Ramirez-Malule H, Ochoa S, Barrera LF, Ríos-Estepa R (2017) Metabolic adaptation of two in silico mutants of mycobacterium tuberculosis during infection. BMC Syst Biol 11(1):107CrossRef
50.
go back to reference Machado D, Herrgård M (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol 10(4):e1003580CrossRef Machado D, Herrgård M (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol 10(4):e1003580CrossRef
51.
go back to reference Mahadevan R, Schilling C (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276CrossRef Mahadevan R, Schilling C (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276CrossRef
52.
go back to reference Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J (2014) Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun 5:3083CrossRef Mardinoglu A, Agren R, Kampf C, Asplund A, Uhlen M, Nielsen J (2014) Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun 5:3083CrossRef
54.
go back to reference Mienda BS, Salihu R, Adamu A, Idris S (2018) Genome-scale metabolic models as platforms for identification of novel genes as antimicrobial drug targets. Futur Microbiol 13(4):455–467CrossRef Mienda BS, Salihu R, Adamu A, Idris S (2018) Genome-scale metabolic models as platforms for identification of novel genes as antimicrobial drug targets. Futur Microbiol 13(4):455–467CrossRef
55.
go back to reference Mitchell TM (1997) Machine learning. 1997, vol 45(37). McGraw Hill, Burr Ridge, pp 870–877 Mitchell TM (1997) Machine learning. 1997, vol 45(37). McGraw Hill, Burr Ridge, pp 870–877
56.
go back to reference Nozawa T, Suzuki M, Takahashi K, Yabuuchi H, Maeda T, Tsuji A, Tamai I (2004) Involvement of estrone-3-sulfate transporters in proliferation of hormone-dependent breast cancer cells. J Pharmacol Exp Ther 311(3):1032–1037CrossRef Nozawa T, Suzuki M, Takahashi K, Yabuuchi H, Maeda T, Tsuji A, Tamai I (2004) Involvement of estrone-3-sulfate transporters in proliferation of hormone-dependent breast cancer cells. J Pharmacol Exp Ther 311(3):1032–1037CrossRef
57.
go back to reference Nozawa T, Suzuki M, Yabuuchi H, Irokawa M, Tsuji A, Tamai I (2005) Suppression of cell proliferation by inhibition of estrone-3-sulfate transporter in estrogen-dependent breast cancer cells. Pharm Res 22(10):1634–1641CrossRef Nozawa T, Suzuki M, Yabuuchi H, Irokawa M, Tsuji A, Tamai I (2005) Suppression of cell proliferation by inhibition of estrone-3-sulfate transporter in estrogen-dependent breast cancer cells. Pharm Res 22(10):1634–1641CrossRef
58.
go back to reference Ohler U, Liao GC, Niemann H, Rubin GM (2002) Computational analysis of core promoters in the Drosophila genome. Genome Biol 3(12):research0087–1CrossRef Ohler U, Liao GC, Niemann H, Rubin GM (2002) Computational analysis of core promoters in the Drosophila genome. Genome Biol 3(12):research0087–1CrossRef
59.
go back to reference Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245CrossRef Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245CrossRef
60.
go back to reference Pacheco MP, Sauter T (2018) The FASTCORE family: for the fast reconstruction of compact context-specific metabolic networks models. Metabolic network reconstruction and modeling. Springer, Berlin, pp 101–110 Pacheco MP, Sauter T (2018) The FASTCORE family: for the fast reconstruction of compact context-specific metabolic networks models. Metabolic network reconstruction and modeling. Springer, Berlin, pp 101–110
61.
go back to reference Pacheco MP, John E, Kaoma T, Heinäniemi M, Nicot N, Vallar L, Bueb JL, Sinkkonen L, Sauter T (2015) Integrated metabolic modelling reveals cell-type specific epigenetic control points of the macrophage metabolic network. BMC Genomics 16(1):809CrossRef Pacheco MP, John E, Kaoma T, Heinäniemi M, Nicot N, Vallar L, Bueb JL, Sinkkonen L, Sauter T (2015) Integrated metabolic modelling reveals cell-type specific epigenetic control points of the macrophage metabolic network. BMC Genomics 16(1):809CrossRef
63.
go back to reference Pacheco MP, Bintener T, Ternes D, Kulms D, Haan S, Letellier E, Sauter T (subm) Identifying and targeting cancer-specific metabolism with network-based drug target prediction Pacheco MP, Bintener T, Ternes D, Kulms D, Haan S, Letellier E, Sauter T (subm) Identifying and targeting cancer-specific metabolism with network-based drug target prediction
64.
go back to reference Plaimas K, Mallm JP, Oswald M, Svara F, Sourjik V, Eils R, König R (2008) Machine learning based analyses on metabolic networks supports high-throughput knockout screens. BMC Syst Biol 2(1):67CrossRef Plaimas K, Mallm JP, Oswald M, Svara F, Sourjik V, Eils R, König R (2008) Machine learning based analyses on metabolic networks supports high-throughput knockout screens. BMC Syst Biol 2(1):67CrossRef
65.
go back to reference Plaimas K, Eils R, König R (2010) Identifying essential genes in bacterial metabolic networks with machine learning methods. BMC Syst Biol 4(1):56CrossRef Plaimas K, Eils R, König R (2010) Identifying essential genes in bacterial metabolic networks with machine learning methods. BMC Syst Biol 4(1):56CrossRef
66.
go back to reference Raman K, Pratapa A, Mohite O, Balachandran S (2018) Computational prediction of synthetic lethals in genome-scale metabolic models using fast-SL. Metabolic network reconstruction and modeling. Springer, Berlin, pp 315–336 Raman K, Pratapa A, Mohite O, Balachandran S (2018) Computational prediction of synthetic lethals in genome-scale metabolic models using fast-SL. Metabolic network reconstruction and modeling. Springer, Berlin, pp 315–336
67.
go back to reference Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD (2004) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 6(1):R2CrossRef Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD (2004) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 6(1):R2CrossRef
68.
go back to reference Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D (2002) BRENDA: a resource for enzyme data and metabolic information Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D (2002) BRENDA: a resource for enzyme data and metabolic information
69.
go back to reference Schultz A, Qutub AA (2016) Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput Biol 12(3):e1004808CrossRef Schultz A, Qutub AA (2016) Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput Biol 12(3):e1004808CrossRef
70.
go back to reference zu Schwabedissen HEM, Tirona RG, Yip CS, Ho RH, Kim RB, (2008) Interplay between the nuclear receptor pregnane X receptor and the uptake transporter organic anion transporter polypeptide 1A2 selectively enhances estrogen effects in breast cancer. Cancer Res 68(22):9338–9347 zu Schwabedissen HEM, Tirona RG, Yip CS, Ho RH, Kim RB, (2008) Interplay between the nuclear receptor pregnane X receptor and the uptake transporter organic anion transporter polypeptide 1A2 selectively enhances estrogen effects in breast cancer. Cancer Res 68(22):9338–9347
71.
go back to reference Shaked I, Oberhardt MA, Atias N, Sharan R, Ruppin E (2016) Metabolic network prediction of drug side effects. Cell Syst 2(3):209–213CrossRef Shaked I, Oberhardt MA, Atias N, Sharan R, Ruppin E (2016) Metabolic network prediction of drug side effects. Cell Syst 2(3):209–213CrossRef
72.
go back to reference Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87CrossRef Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87CrossRef
73.
go back to reference Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, Chary KK, Reimers MA, Scherf U, Kahn A, Dolginow D et al (2007) Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol Cancer Ther 6(3):820–832CrossRef Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, Chary KK, Reimers MA, Scherf U, Kahn A, Dolginow D et al (2007) Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol Cancer Ther 6(3):820–832CrossRef
74.
go back to reference Tarca AL, Carey VJ, Xw Chen, Romero R, Drăghici S (2007) Machine learning and its applications to biology. PLoS Comput Biol 3(6):e116CrossRef Tarca AL, Carey VJ, Xw Chen, Romero R, Drăghici S (2007) Machine learning and its applications to biology. PLoS Comput Biol 3(6):e116CrossRef
75.
go back to reference Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31(5):419CrossRef Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31(5):419CrossRef
77.
go back to reference Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84CrossRef Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84CrossRef
79.
go back to reference Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM, Network CGAR et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113–1120CrossRef Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM, Network CGAR et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113–1120CrossRef
80.
go back to reference Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR et al (2012) Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41(D1):D955–D961CrossRef Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR et al (2012) Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41(D1):D955–D961CrossRef
81.
go back to reference Yizhak K, Gaude E, Le Dévédec S, Waldman YY, Stein GY, van de Water B, Frezza C, Ruppin E (2014) Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. ELIFE 3:e03641 Yizhak K, Gaude E, Le Dévédec S, Waldman YY, Stein GY, van de Water B, Frezza C, Ruppin E (2014) Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. ELIFE 3:e03641
82.
go back to reference Yizhak K, Le Dévédec SE, Rogkoti VM, Baenke F, de Boer VC, Frezza C, Schulze A, van de Water B, Ruppin E (2014) A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol Syst Biol 10(8):744CrossRef Yizhak K, Le Dévédec SE, Rogkoti VM, Baenke F, de Boer VC, Frezza C, Schulze A, van de Water B, Ruppin E (2014) A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol Syst Biol 10(8):744CrossRef
83.
go back to reference Zampieri G, Coggins M, Valle G, Angione C (2017) A poly-omics machine-learning method to predict metabolite production in CHO cells Zampieri G, Coggins M, Valle G, Angione C (2017) A poly-omics machine-learning method to predict metabolite production in CHO cells
84.
go back to reference Zomorrodi AR, Islam MM, Maranas CD (2014) d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth Biol 3(4):247–257CrossRef Zomorrodi AR, Islam MM, Maranas CD (2014) d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth Biol 3(4):247–257CrossRef
85.
go back to reference Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc: Ser B (Stat Methodol) 67(2):301–320MathSciNetMATHCrossRef Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc: Ser B (Stat Methodol) 67(2):301–320MathSciNetMATHCrossRef
86.
go back to reference Zur H, Ruppin E, Shlomi T (2010) iMAT: an integrative metabolic analysis tool. Bioinformatics 26(24):3140–3142CrossRef Zur H, Ruppin E, Shlomi T (2010) iMAT: an integrative metabolic analysis tool. Bioinformatics 26(24):3140–3142CrossRef
Metadata
Title
Towards the Integration of Metabolic Network Modelling and Machine Learning for the Routine Analysis of High-Throughput Patient Data
Authors
Maria Pires Pacheco
Tamara Bintener
Thomas Sauter
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-17297-8_15

Premium Partner