Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Towards Ubiquitous Privacy Decision Support: Machine Prediction of Privacy Decisions in IoT

Abstract

We present a mechanism to predict privacy decisions of users in Internet of Things (IoT) environments, through data mining and machine learning techniques. To construct predictive models, we tested several different machine learning models, combinations of features, and model training strategies on human behavioral data collected from an experience-sampling study. Experimental results showed that a machine learning model called linear model and deep neural networks (LMDNN) outperforms conventional methods for predicting users’ privacy decisions for various IoT services. We also found that a feature vector, composed of both contextual parameters and privacy segment information, provides LMDNN models with the best predictive performance. Lastly, we proposed a novel approach called one-size-fits-segment modeling, which provides a common predictive model to a segment of users who share a similar notion of privacy. We confirmed that one-size-fits-segment modeling outperforms previous approaches, namely individual and one-size-fits-all modeling. From a user perspective, our prediction mechanism takes contextual factors embedded in IoT services into account and only utilizes a small amount of information polled from the users. It is therefore less burdensome and privacy-invasive than the other mechanisms. We also discuss practical implications for building predictive models that make privacy decisions on behalf of users in IoT.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The TensorFlow implementation of LMDNN provides an API that enables programmers to selectively configure a wide, deep, or wide and deep model.
 
2
A device of ICS (\(\textit{C}_\textit{3}=6\)) takes a photo of you (\(\textit{C}_\textit{2}=11\)). This happens once (\(\textit{C}_\textit{5}=0\)), while you are in DBH (\(\textit{C}_\textit{1}=3\)), for safety purposes (\(\textit{C}_\textit{4}=1\)), namely to determine if you are a wanted criminal.
 
3
Number of respondents (scenario ID): 140 (#20), 138 (#73), 136 (#93), 162 (#111).
 
4
1—(nonzero entries/total entries in a user-scenario matrix).
 
5
Mode values of these attributes are male, 18–25, and undergraduate students, respectively.
 
Literature
1.
go back to reference Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:​1603.​04467 (2016) Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:​1603.​04467 (2016)
2.
go back to reference Acquisti, A., Grossklags, J.: Privacy attitudes and privacy behavior. In: Economics of Information Security, pp. 165–178. Springer (2004) Acquisti, A., Grossklags, J.: Privacy attitudes and privacy behavior. In: Economics of Information Security, pp. 165–178. Springer (2004)
3.
go back to reference Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010) CrossRef Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010) CrossRef
4.
go back to reference Batalla, J.M., Gajewski, M., Latoszek, W., Krawiec, P., Mavromoustakis, C.X., Mastorakis, G.: ID-based service-oriented communications for unified access to IoT. Comput. Electr. Eng. 52, 98–113 (2016) CrossRef Batalla, J.M., Gajewski, M., Latoszek, W., Krawiec, P., Mavromoustakis, C.X., Mastorakis, G.: ID-based service-oriented communications for unified access to IoT. Comput. Electr. Eng. 52, 98–113 (2016) CrossRef
5.
go back to reference Beel, J., Breitinger, C., Langer, S., Lommatzsch, A., Gipp, B.: Towards reproducibility in recommender-systems research. User Model. User-Adap. Inter. 26(1), 69–101 (2016) CrossRef Beel, J., Breitinger, C., Langer, S., Lommatzsch, A., Gipp, B.: Towards reproducibility in recommender-systems research. User Model. User-Adap. Inter. 26(1), 69–101 (2016) CrossRef
6.
go back to reference Bengio, Y., Delalleau, O., Simard, C.: Decision trees do not generalize to new variations. Comput. Intell. 26(4), 449–467 (2010) MathSciNetCrossRef Bengio, Y., Delalleau, O., Simard, C.: Decision trees do not generalize to new variations. Comput. Intell. 26(4), 449–467 (2010) MathSciNetCrossRef
7.
go back to reference Benisch, M., Kelley, P.G., Sadeh, N., Cranor, L.F.: Capturing location-privacy preferences: quantifying accuracy and user-burden tradeoffs. Pers. Ubiquit. Comput. 15(7), 679–694 (2011) CrossRef Benisch, M., Kelley, P.G., Sadeh, N., Cranor, L.F.: Capturing location-privacy preferences: quantifying accuracy and user-burden tradeoffs. Pers. Ubiquit. Comput. 15(7), 679–694 (2011) CrossRef
8.
go back to reference Bilogrevic, I., Huguenin, K., Agir, B., Jadliwala, M., Gazaki, M., Hubaux, J.P.: A machine-learning based approach to privacy-aware information-sharing in mobile social networks. Pervasive Mob. Comput. 25, 125–142 (2016) CrossRef Bilogrevic, I., Huguenin, K., Agir, B., Jadliwala, M., Gazaki, M., Hubaux, J.P.: A machine-learning based approach to privacy-aware information-sharing in mobile social networks. Pervasive Mob. Comput. 25, 125–142 (2016) CrossRef
9.
go back to reference Burel, G., Saif, H., Alani, H.: Semantic wide and deep learning for detecting crisis-information categories on social media. In: International Semantic Web Conference, pp. 138–155. Springer (2017) Burel, G., Saif, H., Alani, H.: Semantic wide and deep learning for detecting crisis-information categories on social media. In: International Semantic Web Conference, pp. 138–155. Springer (2017)
10.
go back to reference Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide and deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10. ACM (2016) Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide and deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10. ACM (2016)
11.
go back to reference Chow, R., Egelman, S., Kannavara, R., Lee, H., Misra, S., Wang, E.: HCI in business: a collaboration with academia in IoT privacy. In: International Conference on HCI in Business, pp. 679–687. Springer (2015) Chow, R., Egelman, S., Kannavara, R., Lee, H., Misra, S., Wang, E.: HCI in business: a collaboration with academia in IoT privacy. In: International Conference on HCI in Business, pp. 679–687. Springer (2015)
12.
go back to reference Christin, D., Reinhardt, A., Kanhere, S.S., Hollick, M.: A survey on privacy in mobile participatory sensing applications. J. Syst. Softw. 84(11), 1928–1946 (2011) CrossRef Christin, D., Reinhardt, A., Kanhere, S.S., Hollick, M.: A survey on privacy in mobile participatory sensing applications. J. Syst. Softw. 84(11), 1928–1946 (2011) CrossRef
13.
go back to reference Connelly, K., Khalil, A., Liu, Y.: Do I do what I say?: Observed versus stated privacy preferences. Hum. Comput. Interact. 2007, 620–623 (2007) Connelly, K., Khalil, A., Liu, Y.: Do I do what I say?: Observed versus stated privacy preferences. Hum. Comput. Interact. 2007, 620–623 (2007)
14.
go back to reference Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings of the 19th international conference on World Wide Web, pp. 351–360. ACM (2010) Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings of the 19th international conference on World Wide Web, pp. 351–360. ACM (2010)
15.
go back to reference Hine, C.: Privacy in the marketplace. Inform. Soc. 14(4), 253–262 (1998) CrossRef Hine, C.: Privacy in the marketplace. Inform. Soc. 14(4), 253–262 (1998) CrossRef
16.
go back to reference Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15(3), 651–674 (2006) MathSciNetCrossRef Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15(3), 651–674 (2006) MathSciNetCrossRef
17.
go back to reference Huang, Z.: A fast clustering algorithm to cluster very large categorical data sets in data mining. DMKD 3(8), 34–39 (1997) Huang, Z.: A fast clustering algorithm to cluster very large categorical data sets in data mining. DMKD 3(8), 34–39 (1997)
18.
go back to reference Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Disc. 2(3), 283–304 (1998) CrossRef Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Disc. 2(3), 283–304 (1998) CrossRef
19.
go back to reference Jensen, C., Potts, C., Jensen, C.: Privacy practices of Internet users: self-reports versus observed behavior. Int. J. Hum. Comput. Stud. 63(1), 203–227 (2005) CrossRef Jensen, C., Potts, C., Jensen, C.: Privacy practices of Internet users: self-reports versus observed behavior. Int. J. Hum. Comput. Stud. 63(1), 203–227 (2005) CrossRef
20.
go back to reference Karayev, S., Trentacoste, M., Han, H., Agarwala, A., Darrell, T., Hertzmann, A., Winnemoeller, H.: Recognizing image style. arXiv preprint arXiv:​1311.​3715 (2013) Karayev, S., Trentacoste, M., Han, H., Agarwala, A., Darrell, T., Hertzmann, A., Winnemoeller, H.: Recognizing image style. arXiv preprint arXiv:​1311.​3715 (2013)
22.
go back to reference Knijnenburg, B.P., Kobsa, A., Jin, H.: Dimensionality of information disclosure behavior. Int. J. Hum. Comput. Stud. 71(12), 1144–1162 (2013) CrossRef Knijnenburg, B.P., Kobsa, A., Jin, H.: Dimensionality of information disclosure behavior. Int. J. Hum. Comput. Stud. 71(12), 1144–1162 (2013) CrossRef
23.
go back to reference Kumaraguru, P., Cranor, L.F.: Privacy indexes: a survey of Westin’s studies. Carnegie Mellon University, Pittsburgh, PA (2005) Kumaraguru, P., Cranor, L.F.: Privacy indexes: a survey of Westin’s studies. Carnegie Mellon University, Pittsburgh, PA (2005)
24.
go back to reference Lankton, N., McKnight, D., Tripp, J.: Privacy management strategies: an exploratory cluster analysis. In: Proceedings of the 22nd Americas Conference on Information Systems (AMCIS 2016), pp. 1–10 (2016) Lankton, N., McKnight, D., Tripp, J.: Privacy management strategies: an exploratory cluster analysis. In: Proceedings of the 22nd Americas Conference on Information Systems (AMCIS 2016), pp. 1–10 (2016)
25.
go back to reference Lee, H., Kobsa, A.: Understanding user privacy in Internet of Things environments. In: Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on, pp. 407–412. IEEE (2016) Lee, H., Kobsa, A.: Understanding user privacy in Internet of Things environments. In: Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on, pp. 407–412. IEEE (2016)
26.
go back to reference Lee, H., Kobsa, A.: Privacy preference modeling and prediction in a simulated campuswide IoT environment. In: Pervasive Computing and Communications (PerCom), 2017 IEEE International Conference on, pp. 276–285. IEEE (2017) Lee, H., Kobsa, A.: Privacy preference modeling and prediction in a simulated campuswide IoT environment. In: Pervasive Computing and Communications (PerCom), 2017 IEEE International Conference on, pp. 276–285. IEEE (2017)
27.
go back to reference Lee, H., Upright, C., Eliuk, S., Kobsa, A.: Personalized object recognition for augmenting human memory. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 1054–1061. ACM (2016) Lee, H., Upright, C., Eliuk, S., Kobsa, A.: Personalized object recognition for augmenting human memory. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 1054–1061. ACM (2016)
28.
go back to reference Li, Y., Kobsa, A., Knijnenburg, B.P., Nguyen, C., et al.: Cross-cultural privacy prediction. Proc. Priv. Enhancing Technol. 2017(2), 113–132 (2017) CrossRef Li, Y., Kobsa, A., Knijnenburg, B.P., Nguyen, C., et al.: Cross-cultural privacy prediction. Proc. Priv. Enhancing Technol. 2017(2), 113–132 (2017) CrossRef
29.
go back to reference Lin, J., Liu, B., Sadeh, N., Hong, J.I.: Modeling users’ mobile app privacy preferences: restoring usability in a sea of permission settings. In: Proceedings of the 10th Symposium on Usable Privacy and Security (SOUPS 2014), pp. 199–212 (2014) Lin, J., Liu, B., Sadeh, N., Hong, J.I.: Modeling users’ mobile app privacy preferences: restoring usability in a sea of permission settings. In: Proceedings of the 10th Symposium on Usable Privacy and Security (SOUPS 2014), pp. 199–212 (2014)
30.
go back to reference Liu, B., Andersen, M.S., Schaub, F., Almuhimedi, H., Zhang, S., Sadeh, N., Acquisti, A., Agarwal, Y.: Follow my recommendations: a personalized privacy assistant for mobile app permissions. In: Proceedings of the 12th Symposium on Usable Privacy and Security (SOUPS 2016), pp. 27–41 (2016) Liu, B., Andersen, M.S., Schaub, F., Almuhimedi, H., Zhang, S., Sadeh, N., Acquisti, A., Agarwal, Y.: Follow my recommendations: a personalized privacy assistant for mobile app permissions. In: Proceedings of the 12th Symposium on Usable Privacy and Security (SOUPS 2016), pp. 27–41 (2016)
31.
go back to reference Liu, Y., Yang, C., Jiang, L., Xie, S., Zhang, Y.: Intelligent edge computing for IoT-based energy management in smart cities. IEEE Netw. 33(2), 111–117 (2019) CrossRef Liu, Y., Yang, C., Jiang, L., Xie, S., Zhang, Y.: Intelligent edge computing for IoT-based energy management in smart cities. IEEE Netw. 33(2), 111–117 (2019) CrossRef
33.
go back to reference Mavromoustakis, C.X., Batalla, J.M., Mastorakis, G., Markakis, E., Pallis, E.: Socially oriented edge computing for energy awareness in IoT architectures. IEEE Commun. Mag. 56(7), 139–145 (2018) CrossRef Mavromoustakis, C.X., Batalla, J.M., Mastorakis, G., Markakis, E., Pallis, E.: Socially oriented edge computing for energy awareness in IoT architectures. IEEE Commun. Mag. 56(7), 139–145 (2018) CrossRef
34.
go back to reference Naeini, P.E., Bhagavatula, S., Habib, H., Degeling, M., Bauer, L., Cranor, L., Sadeh, N.: Privacy Expectations and preferences in an IoT world. In: Proceedings of the 13th Symposium on Usable Privacy and Security (SOUPS 2017), pp. 399–412 (2017) Naeini, P.E., Bhagavatula, S., Habib, H., Degeling, M., Bauer, L., Cranor, L., Sadeh, N.: Privacy Expectations and preferences in an IoT world. In: Proceedings of the 13th Symposium on Usable Privacy and Security (SOUPS 2017), pp. 399–412 (2017)
35.
go back to reference Norberg, P.A., Horne, D.R., Horne, D.A.: The privacy paradox: personal information disclosure intentions versus behaviors. J. Consum. Aff. 41(1), 100–126 (2007) CrossRef Norberg, P.A., Horne, D.R., Horne, D.A.: The privacy paradox: personal information disclosure intentions versus behaviors. J. Consum. Aff. 41(1), 100–126 (2007) CrossRef
36.
go back to reference Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010) CrossRef Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010) CrossRef
37.
go back to reference Perera, C., Ranjan, R., Wang, L., Khan, S.U., Zomaya, A.Y.: Big data privacy in the Internet of Things era. IT Prof. 17(3), 32–39 (2015) CrossRef Perera, C., Ranjan, R., Wang, L., Khan, S.U., Zomaya, A.Y.: Big data privacy in the Internet of Things era. IT Prof. 17(3), 32–39 (2015) CrossRef
39.
go back to reference Sadeh, N., Hong, J., Cranor, L., Fette, I., Kelley, P., Prabaker, M., Rao, J.: Understanding and capturing people’s privacy policies in a mobile social networking application. Pers. Ubiquit. Comput. 13(6), 401–412 (2009) CrossRef Sadeh, N., Hong, J., Cranor, L., Fette, I., Kelley, P., Prabaker, M., Rao, J.: Understanding and capturing people’s privacy policies in a mobile social networking application. Pers. Ubiquit. Comput. 13(6), 401–412 (2009) CrossRef
40.
go back to reference Shehab, M., Cheek, G., Touati, H., Squicciarini, A.C., Cheng, P.C.: User centric policy management in online social networks. In: Policies for Distributed Systems and Networks (POLICY), 2010 IEEE International Symposium on, pp. 9–13. IEEE (2010) Shehab, M., Cheek, G., Touati, H., Squicciarini, A.C., Cheng, P.C.: User centric policy management in online social networks. In: Policies for Distributed Systems and Networks (POLICY), 2010 IEEE International Symposium on, pp. 9–13. IEEE (2010)
41.
go back to reference Shehab, M., Touati, H.: Semi-supervised policy recommendation for online social networks. In: Advances in Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International Conference on, pp. 360–367. IEEE (2012) Shehab, M., Touati, H.: Semi-supervised policy recommendation for online social networks. In: Advances in Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International Conference on, pp. 360–367. IEEE (2012)
42.
go back to reference Shi, S., Zhang, M., Lu, H., Liu, Y., Ma, S.: Wide and deep learning in job recommendation: an empirical study. In: Asia Information Retrieval Symposium, pp. 112–124. Springer (2017) Shi, S., Zhang, M., Lu, H., Liu, Y., Ma, S.: Wide and deep learning in job recommendation: an empirical study. In: Asia Information Retrieval Symposium, pp. 112–124. Springer (2017)
43.
go back to reference Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust in Internet of Things: the road ahead. Comput. Netw. 76, 146–164 (2015) CrossRef Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust in Internet of Things: the road ahead. Comput. Netw. 76, 146–164 (2015) CrossRef
44.
go back to reference Sinha, A., Li, Y., Bauer, L.: What you want is not what you get: predicting sharing policies for text-based content on facebook. In: Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, pp. 13–24. ACM (2013) Sinha, A., Li, Y., Bauer, L.: What you want is not what you get: predicting sharing policies for text-based content on facebook. In: Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, pp. 13–24. ACM (2013)
45.
go back to reference Spyromitros-Xioufis, E., Petkos, G., Papadopoulos, S., Heyman, R., Kompatsiaris, Y.: Perceived versus actual predictability of personal information in social networks. In: International Conference on Internet Science, pp. 133–147. Springer (2016) Spyromitros-Xioufis, E., Petkos, G., Papadopoulos, S., Heyman, R., Kompatsiaris, Y.: Perceived versus actual predictability of personal information in social networks. In: International Conference on Internet Science, pp. 133–147. Springer (2016)
46.
go back to reference Therneau, T.M., Atkinson, E.J., et al.: An Introduction to Recursive Partitioning Using the RPART Routines. Tech. rep, Mayo Foundation (1997) Therneau, T.M., Atkinson, E.J., et al.: An Introduction to Recursive Partitioning Using the RPART Routines. Tech. rep, Mayo Foundation (1997)
Metadata
Title
Towards Ubiquitous Privacy Decision Support: Machine Prediction of Privacy Decisions in IoT
Authors
Hosub Lee
Alfred Kobsa
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-44907-0_5

Premium Partner