Skip to main content
Top
Published in:

01-12-2016 | Original Article

Tracking local communities in streaming graphs with a dynamic algorithm

Authors: Anita Zakrzewska, David A. Bader

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A variety of massive datasets, such as social networks and biological data, are represented as graphs that reveal underlying connections, trends, and anomalies. Community detection is the task of discovering dense groups of vertices in a graph. Its one specific form is seed set expansion, which finds the best local community for a given set of seed vertices. Greedy, agglomerative algorithms, which are commonly used in seed set expansion, have been previously designed only for a static, unchanging graph. However, in many applications, new data are constantly produced, and vertices and edges are inserted and removed from a graph. We present an algorithm for dynamic seed set expansion, which maintains a local community over time by incrementally updating as the underlying graph changes. We show that our dynamic algorithm outputs high-quality communities that are similar to those found when using a standard static algorithm. It works well both when beginning with an already existing graph and in the fully streaming case when starting with no data. The dynamic approach is also faster than re-computation when low latency updates are needed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aktunc R, Toroslu IH, Ozer M, Davulcu H (2015) A dynamic modularity based community detection algorithm for large-scale networks: DSLM. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015. ACM, pp 1177–1183 Aktunc R, Toroslu IH, Ozer M, Davulcu H (2015) A dynamic modularity based community detection algorithm for large-scale networks: DSLM. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015. ACM, pp 1177–1183
go back to reference Andersen R, Chung F, Lang K (2006) Local graph partitioning using pagerank vectors. In: 47th Annual IEEE symposium on foundations of computer science, 2006. (FOCS’06). IEEE, pp 475–486 Andersen R, Chung F, Lang K (2006) Local graph partitioning using pagerank vectors. In: 47th Annual IEEE symposium on foundations of computer science, 2006. (FOCS’06). IEEE, pp 475–486
go back to reference Andersen R, Lang KJ (2006) Communities from seed sets. In: Proceedings of the 15th international conference on World Wide Web. ACM, pp 223–232 Andersen R, Lang KJ (2006) Communities from seed sets. In: Proceedings of the 15th international conference on World Wide Web. ACM, pp 223–232
go back to reference Asur S, Parthasarathy S, Ucar D (2009) An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans Knowl Discov Data (TKDD) 3(4):16 Asur S, Parthasarathy S, Ucar D (2009) An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans Knowl Discov Data (TKDD) 3(4):16
go back to reference Aynaud T, Fleury E, Guillaume JL, Wang Q (2013) Communities in evolving networks: definitions, detection, and analysis techniques. In: Mukherjee A, Choudhury M, Peruani F, Ganguly N, Mitra B (eds) Dynamics on and of complex networks, vol. 2. Springer, New York, pp 159–200 Aynaud T, Fleury E, Guillaume JL, Wang Q (2013) Communities in evolving networks: definitions, detection, and analysis techniques. In: Mukherjee A, Choudhury M, Peruani F, Ganguly N, Mitra B (eds) Dynamics on and of complex networks, vol. 2. Springer, New York, pp 159–200
go back to reference Aynaud T, Guillaume JL (2010) Static community detection algorithms for evolving networks. In: WiOpt’10: modeling and optimization in mobile, Ad Hoc, and wireless networks. IEEE, pp 508–514 Aynaud T, Guillaume JL (2010) Static community detection algorithms for evolving networks. In: WiOpt’10: modeling and optimization in mobile, Ad Hoc, and wireless networks. IEEE, pp 508–514
go back to reference Bagrow JP, Bollt EM (2005) Local method for detecting communities. Phys Rev E 72(4):046–108CrossRef Bagrow JP, Bollt EM (2005) Local method for detecting communities. Phys Rev E 72(4):046–108CrossRef
go back to reference Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech: Theory Exp 10:P10008CrossRef Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech: Theory Exp 10:P10008CrossRef
go back to reference Cazabet R, Amblard F (2014) Encyclopedia of social network analysis and mining, chapter dynamic community detection. Springer, New York, pp 404–414 Cazabet R, Amblard F (2014) Encyclopedia of social network analysis and mining, chapter dynamic community detection. Springer, New York, pp 404–414
go back to reference Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 554–560 Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 554–560
go back to reference Chen J, Zaiane OR, Goebel R (2009) Detecting communities in large networks by iterative local expansion. In: International conference on computational aspects of social networks, 2009. (CASON’09). IEEE, pp 105–112 Chen J, Zaiane OR, Goebel R (2009) Detecting communities in large networks by iterative local expansion. In: International conference on computational aspects of social networks, 2009. (CASON’09). IEEE, pp 105–112
go back to reference Chung FR (1997) Spectral graph theory, vol 92. American Mathematical Society, ProvidenceMATH Chung FR (1997) Spectral graph theory, vol 92. American Mathematical Society, ProvidenceMATH
go back to reference Clauset A (2005) Finding local community structure in networks. Phys Rev E 72(2):026–132CrossRef Clauset A (2005) Finding local community structure in networks. Phys Rev E 72(2):026–132CrossRef
go back to reference Derényi I, Palla G, Vicsek T (2005) Clique percolation in random networks. Phys Rev Lett 94(16):160–202CrossRefMATH Derényi I, Palla G, Vicsek T (2005) Clique percolation in random networks. Phys Rev Lett 94(16):160–202CrossRefMATH
go back to reference Dinh TN, Xuan Y, Thai MT (2009) Towards social-aware routing in dynamic communication networks. In: 2009 IEEE 28th International on performance computing and communications conference (IPCCC). IEEE, pp 161–168 Dinh TN, Xuan Y, Thai MT (2009) Towards social-aware routing in dynamic communication networks. In: 2009 IEEE 28th International on performance computing and communications conference (IPCCC). IEEE, pp 161–168
go back to reference Evans T, Lambiotte R (2010) Line graphs of weighted networks for overlapping communities. Eur Phys J B 77(2):265–272CrossRef Evans T, Lambiotte R (2010) Line graphs of weighted networks for overlapping communities. Eur Phys J B 77(2):265–272CrossRef
go back to reference Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. In: 2010 international conference on advances in social networks analysis and mining (ASONAM). IEEE, pp 176–183 Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. In: 2010 international conference on advances in social networks analysis and mining (ASONAM). IEEE, pp 176–183
go back to reference Havemann F, Heinz M, Struck A, Gläser J (2011) Identification of overlapping communities and their hierarchy by locally calculating community-changing resolution levels. J Stat Mech: Theory Exp 1:P01023 Havemann F, Heinz M, Struck A, Gläser J (2011) Identification of overlapping communities and their hierarchy by locally calculating community-changing resolution levels. J Stat Mech: Theory Exp 1:P01023
go back to reference Hopcroft J, Khan O, Kulis B, Selman B (2004) Tracking evolving communities in large linked networks. Proc Natl Acad Sci 101(suppl 1):5249–5253CrossRef Hopcroft J, Khan O, Kulis B, Selman B (2004) Tracking evolving communities in large linked networks. Proc Natl Acad Sci 101(suppl 1):5249–5253CrossRef
go back to reference Jdidia MB, Robardet C, Fleury E (2007) Communities detection and analysis of their dynamics in collaborative networks. In: ICDIM, pp 744–749 Jdidia MB, Robardet C, Fleury E (2007) Communities detection and analysis of their dynamics in collaborative networks. In: ICDIM, pp 744–749
go back to reference Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlapping and hierarchical community structure in complex networks. New J Phys 11(3):033,015CrossRef Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlapping and hierarchical community structure in complex networks. New J Phys 11(3):033,015CrossRef
go back to reference Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011) Finding statistically significant communities in networks. PLoS One 6(4):e18,961CrossRef Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011) Finding statistically significant communities in networks. PLoS One 6(4):e18,961CrossRef
go back to reference Lee C, Reid F, McDaid A, Hurley N (2010) Detecting highly overlapping community structure by greedy clique expansion. In: 4th SNA-KDD workshop, p 3342 Lee C, Reid F, McDaid A, Hurley N (2010) Detecting highly overlapping community structure by greedy clique expansion. In: 4th SNA-KDD workshop, p 3342
go back to reference Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2009) Analyzing communities and their evolutions in dynamic social networks. ACM Trans Knowl Discov Data (TKDD) 3(2):8 Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2009) Analyzing communities and their evolutions in dynamic social networks. ACM Trans Knowl Discov Data (TKDD) 3(2):8
go back to reference Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980):876–878MathSciNetCrossRefMATH Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980):876–878MathSciNetCrossRefMATH
go back to reference Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026–113CrossRef Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026–113CrossRef
go back to reference Ning H, Xu W, Chi Y, Gong Y, Huang TS (2010) Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recognit 43(1):113–127CrossRefMATH Ning H, Xu W, Chi Y, Gong Y, Huang TS (2010) Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recognit 43(1):113–127CrossRefMATH
go back to reference Palla G, Barabási AL, Vicsek T (2007) Quantifying social group evolution. Nature 446(7136):664–667CrossRef Palla G, Barabási AL, Vicsek T (2007) Quantifying social group evolution. Nature 446(7136):664–667CrossRef
go back to reference Plantié M, Crampes M (2013) Survey on social community detection. In: Ramzan N, van Zwol R, Lee J-S, Clüver K, Hua X-S (eds) Social media retrieval. Springer, London, pp 65–85 Plantié M, Crampes M (2013) Survey on social community detection. In: Ramzan N, van Zwol R, Lee J-S, Clüver K, Hua X-S (eds) Social media retrieval. Springer, London, pp 65–85
go back to reference Riedy J, Bader DA (2013) Multithreaded community monitoring for massive streaming graph data. In: 2013 IEEE 27th international parallel and distributed processing symposium workshops and PhD Forum (IPDPSW). IEEE, pp 1646–1655 Riedy J, Bader DA (2013) Multithreaded community monitoring for massive streaming graph data. In: 2013 IEEE 27th international parallel and distributed processing symposium workshops and PhD Forum (IPDPSW). IEEE, pp 1646–1655
go back to reference Shang J, Liu L, Xie F, Chen Z, Miao J, Fang X, Wu C (2014) A real-time detecting algorithm for tracking community structure of dynamic networks. arXiv preprint arXiv:1407.2683 Shang J, Liu L, Xie F, Chen Z, Miao J, Fang X, Wu C (2014) A real-time detecting algorithm for tracking community structure of dynamic networks. arXiv preprint arXiv:​1407.​2683
go back to reference Spiliopoulou M (2011) Evolution in social networks: a survey. In: Aggarwal CC (ed) Social network data analytics. Springer, pp 149–175 Spiliopoulou M (2011) Evolution in social networks: a survey. In: Aggarwal CC (ed) Social network data analytics. Springer, pp 149–175
go back to reference Takaffoli M, Rabbany R, Zaïane OR (2013) Incremental local community identification in dynamic social networks. In: Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining. ACM, pp 90–94 Takaffoli M, Rabbany R, Zaïane OR (2013) Incremental local community identification in dynamic social networks. In: Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining. ACM, pp 90–94
go back to reference Tang L, Liu H (2010) Community detection and mining in social media. Synth Lect Data Min Knowl Discov 2(1):1–137CrossRef Tang L, Liu H (2010) Community detection and mining in social media. Synth Lect Data Min Knowl Discov 2(1):1–137CrossRef
go back to reference Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic social networks. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 717–726 Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic social networks. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 717–726
go back to reference Waltman L, van Eck NJ (2013) A smart local moving algorithm for large-scale modularity-based community detection. The Eur Phys J B 86(11):1–14CrossRef Waltman L, van Eck NJ (2013) A smart local moving algorithm for large-scale modularity-based community detection. The Eur Phys J B 86(11):1–14CrossRef
go back to reference Xie J, Kelley S, Szymanski BK (2013) Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput Surv (CSUR) 45(4):43CrossRefMATH Xie J, Kelley S, Szymanski BK (2013) Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput Surv (CSUR) 45(4):43CrossRefMATH
go back to reference Xie J, Szymanski BK (2012)Towards linear time overlapping community detection in social networks. In: Advances in knowledge discovery and data mining. Springer, pp 25–36 Xie J, Szymanski BK (2012)Towards linear time overlapping community detection in social networks. In: Advances in knowledge discovery and data mining. Springer, pp 25–36
go back to reference Zakrzewska A, Bader DA (2015) A dynamic algorithm for local community detection in graphs. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015, (ASONAM 15). ACM, New York, pp 559–564 Zakrzewska A, Bader DA (2015) A dynamic algorithm for local community detection in graphs. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015, (ASONAM 15). ACM, New York, pp 559–564
Metadata
Title
Tracking local communities in streaming graphs with a dynamic algorithm
Authors
Anita Zakrzewska
David A. Bader
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0374-5

Premium Partner