Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

18-01-2021 | Regular Paper | Issue 4/2021

Knowledge and Information Systems 4/2021

Tracking triadic cardinality distributions for burst detection in high-speed graph streams

Journal:
Knowledge and Information Systems > Issue 4/2021
Authors:
Junzhou Zhao, Pinghui Wang, Zhouguo Chen, Jianwei Ding, John C. S. Lui, Don Towsley, Xiaohong Guan
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In everyday life, we often observe unusually frequent interactions among people before or during important events, e.g., people send/receive more greetings to/from their friends on holidays than regular days. We also observe that some videos or hashtags suddenly go viral through people’s sharing on online social networks (OSNs). Do these seemingly different phenomena share a common structure? All these phenomena are associated with the sudden surges of node interactions in networks, which we call “bursts” in this work. We uncover that, in many scenarios, the emergence of a burst is accompanied with the formation of triangles in networks. This finding motivates us to propose a new and robust method for burst detection on an OSN. We first introduce a new measure, i.e., “triadic cardinality distribution,” corresponding to the fractions of nodes with different numbers of triangles, i.e., triadic cardinalities, in a network. We show that this distribution not only changes when a burst occurs, but it also has a robustness property that it is immunized against common spamming social-bot attacks. Hence, by tracking triadic cardinality distributions, we can more reliably detect bursts than simply counting node interactions on an OSN. To avoid handling massive activity data generated by OSN users during the triadic tracking, we design an efficient “sample-estimate” framework to provide maximum likelihood estimate of the triadic cardinality distribution. We propose several sampling methods and provide insights into their performance difference through both theoretical analysis and empirical experiments on real-world networks.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2021

Knowledge and Information Systems 4/2021 Go to the issue

Premium Partner

    Image Credits