Skip to main content
Top

2025 | OriginalPaper | Chapter

TrackNeRF: Bundle Adjusting NeRF from Sparse and Noisy Views via Feature Tracks

Authors : Jinjie Mai, Wenxuan Zhu, Sara Rojas, Jesus Zarzar, Abdullah Hamdi, Guocheng Qian, Bing Li, Silvio Giancola, Bernard Ghanem

Published in: Computer Vision – ECCV 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Neural radiance fields (NeRFs) generally require many images with accurate poses for accurate novel view synthesis, which does not reflect realistic setups where views can be sparse and poses can be noisy. Previous solutions for learning NeRFs with sparse views and noisy poses only consider local geometry consistency with pairs of views. Closely following bundle adjustment in Structure-from-Motion (SfM), we introduce TrackNeRF for more globally consistent geometry reconstruction and more accurate pose optimization. TrackNeRF introduces feature tracks, i.e.connected pixel trajectories across all visible views that correspond to the same 3D points. By enforcing reprojection consistency among feature tracks, TrackNeRF encourages holistic 3D consistency explicitly. Through extensive experiments, TrackNeRF sets a new benchmark in noisy and sparse view reconstruction. In particular, TrackNeRF shows significant improvements over the state-of-the-art BARF and SPARF by \({\sim }8\) and \({\sim }1\) in terms of PSNR on DTU under various sparse and noisy view setups. The code is available at https://tracknerf.github.io/.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agarwal, S., et al.: Building Rome in a day. Commun. ACM 54(10), 105–112 (2011)CrossRef Agarwal, S., et al.: Building Rome in a day. Commun. ACM 54(10), 105–112 (2011)CrossRef
2.
go back to reference Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-Nerf: a multiscale representation for anti-aliasing neural radiance fields. In: CVPR, pp. 5855–5864 (2021) Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-Nerf: a multiscale representation for anti-aliasing neural radiance fields. In: CVPR, pp. 5855–5864 (2021)
3.
go back to reference Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: MIP-Nerf 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5470–5479 (2022) Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: MIP-Nerf 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5470–5479 (2022)
4.
go back to reference Charatan, D., Li, S.L., Tagliasacchi, A., Sitzmann, V.: pixelSplat: 3D gaussian splats from image pairs for scalable generalizable 3d reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19457–19467 (2024) Charatan, D., Li, S.L., Tagliasacchi, A., Sitzmann, V.: pixelSplat: 3D gaussian splats from image pairs for scalable generalizable 3d reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19457–19467 (2024)
5.
go back to reference Chen, R., Chen, Y., Jiao, N., Jia, K.: Fantasia3D: disentangling geometry and appearance for high-quality text-to-3D content creation. arXiv preprint arXiv:2303.13873 (2023) Chen, R., Chen, Y., Jiao, N., Jia, K.: Fantasia3D: disentangling geometry and appearance for high-quality text-to-3D content creation. arXiv preprint arXiv:​2303.​13873 (2023)
6.
go back to reference Chen, S., Li, J., Zhang, Y., Zou, B.: Improving neural radiance fields with depth-aware optimization for novel view synthesis. arXiv preprint arXiv:2304.05218 (2023) Chen, S., Li, J., Zhang, Y., Zou, B.: Improving neural radiance fields with depth-aware optimization for novel view synthesis. arXiv preprint arXiv:​2304.​05218 (2023)
7.
go back to reference Chen, S., Zhang, Y., Xu, Y., Zou, B.: Structure-aware nerf without posed camera via epipolar constraint. arXiv preprint arXiv:2210.00183 (2022) Chen, S., Zhang, Y., Xu, Y., Zou, B.: Structure-aware nerf without posed camera via epipolar constraint. arXiv preprint arXiv:​2210.​00183 (2022)
8.
go back to reference Chen, Y., Lee, G.H.: DBARF: deep bundle-adjusting generalizable neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24–34 (2023) Chen, Y., Lee, G.H.: DBARF: deep bundle-adjusting generalizable neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24–34 (2023)
9.
go back to reference Chen, Y., et al.: Local-to-global registration for bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8264–8273 (2023) Chen, Y., et al.: Local-to-global registration for bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8264–8273 (2023)
10.
go back to reference Chen, Y., Xu, H., Wu, Q., Zheng, C., Cham, T.J., Cai, J.: Explicit correspondence matching for generalizable neural radiance fields. arXiv preprint arXiv:2304.12294 (2023) Chen, Y., Xu, H., Wu, Q., Zheng, C., Cham, T.J., Cai, J.: Explicit correspondence matching for generalizable neural radiance fields. arXiv preprint arXiv:​2304.​12294 (2023)
11.
12.
go back to reference Cheng, K., et al.: UC-Nerf: neural radiance field for under-calibrated multi-view cameras in autonomous driving. arXiv preprint arXiv:2311.16945 (2023) Cheng, K., et al.: UC-Nerf: neural radiance field for under-calibrated multi-view cameras in autonomous driving. arXiv preprint arXiv:​2311.​16945 (2023)
13.
go back to reference Chng, S.F., Ramasinghe, S., Sherrah, J., Lucey, S.: Gaussian activated neural radiance fields for high fidelity reconstruction and pose estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 264–280. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_16CrossRef Chng, S.F., Ramasinghe, S., Sherrah, J., Lucey, S.: Gaussian activated neural radiance fields for high fidelity reconstruction and pose estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13693, pp. 264–280. Springer, Cham (2022). https://​doi.​org/​10.​1007/​978-3-031-19827-4_​16CrossRef
14.
go back to reference Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised NeRF: fewer views and faster training for free. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022) Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised NeRF: fewer views and faster training for free. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
15.
go back to reference DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 224–236 (2018) DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 224–236 (2018)
16.
go back to reference Du, Y., Smith, C., Tewari, A., Sitzmann, V.: Learning to render novel views from wide-baseline stereo pairs. In: CVPR (2023) Du, Y., Smith, C., Tewari, A., Sitzmann, V.: Learning to render novel views from wide-baseline stereo pairs. In: CVPR (2023)
19.
go back to reference Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5501–5510 (2022) Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5501–5510 (2022)
20.
go back to reference Fu, H., Yu, X., Li, L., Zhang, L.: CBARF: cascaded bundle-adjusting neural radiance fields from imperfect camera poses. arXiv preprint arXiv:2310.09776 (2023) Fu, H., Yu, X., Li, L., Zhang, L.: CBARF: cascaded bundle-adjusting neural radiance fields from imperfect camera poses. arXiv preprint arXiv:​2310.​09776 (2023)
21.
go back to reference Fu, Y., Liu, S., Kulkarni, A., Kautz, J., Efros, A.A., Wang, X.: COLMAP-free 3D Gaussian splatting (2023) Fu, Y., Liu, S., Kulkarni, A., Kautz, J., Efros, A.A., Wang, X.: COLMAP-free 3D Gaussian splatting (2023)
22.
go back to reference Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017) Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–279 (2017)
23.
go back to reference Guangcong, Chen, Z., Loy, C.C., Liu, Z.: SparseNerf: distilling depth ranking for few-shot novel view synthesis. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2023) Guangcong, Chen, Z., Loy, C.C., Liu, Z.: SparseNerf: distilling depth ranking for few-shot novel view synthesis. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2023)
24.
go back to reference Hamdi, A., Ghanem, B., Nießner, M.: Sparf: large-scale learning of 3D sparse radiance fields from few input images. arxiv (2022) Hamdi, A., Ghanem, B., Nießner, M.: Sparf: large-scale learning of 3D sparse radiance fields from few input images. arxiv (2022)
26.
go back to reference Hamdi, A., et al.: GES: generalized exponential splatting for efficient radiance field rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19812–19822 (2024) Hamdi, A., et al.: GES: generalized exponential splatting for efficient radiance field rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19812–19822 (2024)
28.
go back to reference Heise, P., Klose, S., Jensen, B., Knoll, A.: PM-Huber: PatchMatch with Huber regularization for stereo matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2360–2367 (2013) Heise, P., Klose, S., Jensen, B., Knoll, A.: PM-Huber: PatchMatch with Huber regularization for stereo matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2360–2367 (2013)
29.
go back to reference Hong, S., Jung, J., Shin, H., Yang, J., Kim, S., Luo, C.: Unifying correspondence, pose and nerf for pose-free novel view synthesis from stereo pairs. arXiv preprint arXiv:2312.07246 (2023) Hong, S., Jung, J., Shin, H., Yang, J., Kim, S., Luo, C.: Unifying correspondence, pose and nerf for pose-free novel view synthesis from stereo pairs. arXiv preprint arXiv:​2312.​07246 (2023)
30.
go back to reference Hu, S., et al.: ConsistentNerf: enhancing neural radiance fields with 3D consistency for sparse view synthesis. arXiv preprint arXiv:2305.11031 (2023) Hu, S., et al.: ConsistentNerf: enhancing neural radiance fields with 3D consistency for sparse view synthesis. arXiv preprint arXiv:​2305.​11031 (2023)
31.
go back to reference Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B.: DeepMVS: learning multi-view stereopsis. In: CVPR, pp. 2821–2830 (2018) Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B.: DeepMVS: learning multi-view stereopsis. In: CVPR, pp. 2821–2830 (2018)
32.
go back to reference Jain, A., Tancik, M., Abbeel, P.: Putting nerf on a diet: semantically consistent few-shot view synthesis. In: CVPR, pp. 5885–5894 (2021) Jain, A., Tancik, M., Abbeel, P.: Putting nerf on a diet: semantically consistent few-shot view synthesis. In: CVPR, pp. 5885–5894 (2021)
33.
go back to reference Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: CVPR, pp. 406–413 (2014) Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: CVPR, pp. 406–413 (2014)
34.
go back to reference Jeong, Y., Ahn, S., Choy, C., Anandkumar, A., Cho, M., Park, J.: Self-calibrating neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5846–5854 (2021) Jeong, Y., Ahn, S., Choy, C., Anandkumar, A., Cho, M., Park, J.: Self-calibrating neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5846–5854 (2021)
36.
go back to reference Kim, I., Choi, M., Kim, H.J.: Up-Nerf: unconstrained pose prior-free neural radiance field. In: Advances in Neural Information Processing Systems, vol. 36 (2024) Kim, I., Choi, M., Kim, H.J.: Up-Nerf: unconstrained pose prior-free neural radiance field. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
37.
go back to reference Kim, M., Seo, S., Han, B.: InfoNerf: ray entropy minimization for few-shot neural volume rendering. In: CVPR, pp. 12912–12921 (2022) Kim, M., Seo, S., Han, B.: InfoNerf: ray entropy minimization for few-shot neural volume rendering. In: CVPR, pp. 12912–12921 (2022)
38.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)
39.
go back to reference Lao, Y., Xu, X., Cai, Z., Liu, X., Zhao, H.: CorresNerf: image correspondence priors for neural radiance fields. arXiv preprint arXiv:2312.06642 (2023) Lao, Y., Xu, X., Cai, Z., Liu, X., Zhao, H.: CorresNerf: image correspondence priors for neural radiance fields. arXiv preprint arXiv:​2312.​06642 (2023)
40.
go back to reference Li, J., et al.: DNGaussian: optimizing sparse-view 3d gaussian radiance fields with global-local depth normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20775–20785 (2024) Li, J., et al.: DNGaussian: optimizing sparse-view 3d gaussian radiance fields with global-local depth normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20775–20785 (2024)
41.
go back to reference Li, M., Wang, P., Zhao, L., Liao, B., Liu, P.: USB-Nerf: unrolling shutter bundle adjusted neural radiance fields. arXiv preprint arXiv:2310.02687 (2023) Li, M., Wang, P., Zhao, L., Liao, B., Liu, P.: USB-Nerf: unrolling shutter bundle adjusted neural radiance fields. arXiv preprint arXiv:​2310.​02687 (2023)
42.
go back to reference Lin, C.H., et al.: Magic3D: high-resolution text-to-3d content creation. In: CVPR (2023) Lin, C.H., et al.: Magic3D: high-resolution text-to-3d content creation. In: CVPR (2023)
43.
go back to reference Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: IEEE International Conference on Computer Vision (ICCV) (2021) Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: IEEE International Conference on Computer Vision (ICCV) (2021)
44.
go back to reference Lindenberger, P., Sarlin, P.E., Larsson, V., Pollefeys, M.: Pixel-perfect structure-from-motion with featuremetric refinement. In: ICCV (2021) Lindenberger, P., Sarlin, P.E., Larsson, V., Pollefeys, M.: Pixel-perfect structure-from-motion with featuremetric refinement. In: ICCV (2021)
45.
go back to reference Liu, R., Wu, R., Van Hoorick, B., Tokmakov, P., Zakharov, S., Vondrick, C.: Zero-1-to-3: zero-shot one image to 3D object. arXiv preprint arXiv:2303.11328 (2023) Liu, R., Wu, R., Van Hoorick, B., Tokmakov, P., Zakharov, S., Vondrick, C.: Zero-1-to-3: zero-shot one image to 3D object. arXiv preprint arXiv:​2303.​11328 (2023)
46.
go back to reference Liu, T., Ye, X., Zhao, W., Pan, Z., Shi, M., Cao, Z.: When epipolar constraint meets non-local operators in multi-view stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 18088–18097 (2023) Liu, T., Ye, X., Zhao, W., Pan, Z., Shi, M., Cao, Z.: When epipolar constraint meets non-local operators in multi-view stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 18088–18097 (2023)
47.
go back to reference Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: Learning dynamic renderable volumes from images. arXiv preprint arXiv:1906.07751 (2019) Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: Learning dynamic renderable volumes from images. arXiv preprint arXiv:​1906.​07751 (2019)
48.
go back to reference Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)CrossRef Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)CrossRef
49.
go back to reference Mai, J., Hamdi, A., Giancola, S., Zhao, C., Ghanem, B.: EgoLoc: revisiting 3D object localization from egocentric videos with visual queries. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 45–57 (2023) Mai, J., Hamdi, A., Giancola, S., Zhao, C., Ghanem, B.: EgoLoc: revisiting 3D object localization from egocentric videos with visual queries. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 45–57 (2023)
50.
go back to reference Melas-Kyriazi, L., Rupprecht, C., Laina, I., Vedaldi, A.: Realfusion: 360\(^\circ \) reconstruction of any object from a single image. In: CVPR (2023) Melas-Kyriazi, L., Rupprecht, C., Laina, I., Vedaldi, A.: Realfusion: 360\(^\circ \) reconstruction of any object from a single image. In: CVPR (2023)
51.
go back to reference Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)CrossRef Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)CrossRef
52.
54.
go back to reference Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.: RegNerf: regularizing neural radiance fields for view synthesis from sparse inputs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5480–5490 (2022) Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.: RegNerf: regularizing neural radiance fields for view synthesis from sparse inputs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5480–5490 (2022)
55.
go back to reference Park, K., Henzler, P., Mildenhall, B., Barron, J.T., Martin-Brualla, R.: Camp: camera preconditioning for neural radiance fields. ACM Trans, Graph (2023) Park, K., Henzler, P., Mildenhall, B., Barron, J.T., Martin-Brualla, R.: Camp: camera preconditioning for neural radiance fields. ACM Trans, Graph (2023)
56.
go back to reference Philip, J., Deschaintre, V.: Floaters no more: radiance field gradient scaling for improved near-camera training. In: Ritschel, T., Weidlich, A. (eds.) Eurographics Symposium on Rendering. The Eurographics Association (2023). https://doi.org/10.2312/sr.20231122 Philip, J., Deschaintre, V.: Floaters no more: radiance field gradient scaling for improved near-camera training. In: Ritschel, T., Weidlich, A. (eds.) Eurographics Symposium on Rendering. The Eurographics Association (2023). https://​doi.​org/​10.​2312/​sr.​20231122
57.
go back to reference Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: DreamFusion: text-to-3D using 2D diffusion. In: ICLR (2022) Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: DreamFusion: text-to-3D using 2D diffusion. In: ICLR (2022)
58.
go back to reference Qian, G., et al.: Magic123: one image to high-quality 3D object generation using both 2D and 3D diffusion priors. In: ICLR (2024) Qian, G., et al.: Magic123: one image to high-quality 3D object generation using both 2D and 3D diffusion priors. In: ICLR (2024)
59.
go back to reference Rosinol, A., Leonard, J.J., Carlone, L.: Nerf-slam: real-time dense monocular slam with neural radiance fields. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3437–3444. IEEE (2023) Rosinol, A., Leonard, J.J., Carlone, L.: Nerf-slam: real-time dense monocular slam with neural radiance fields. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3437–3444. IEEE (2023)
60.
go back to reference Sargent, K., et al.: ZeroNVS: zero-shot 360-degree view synthesis from a single real image. In: CVPR, 2024 (2023) Sargent, K., et al.: ZeroNVS: zero-shot 360-degree view synthesis from a single real image. In: CVPR, 2024 (2023)
61.
go back to reference Sattler, T., et al.: Benchmarking 6dof outdoor visual localization in changing conditions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8601–8610 (2018) Sattler, T., et al.: Benchmarking 6dof outdoor visual localization in changing conditions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8601–8610 (2018)
62.
go back to reference Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016) Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
64.
go back to reference Seo, H., Kim, H., Kim, G., Chun, S.Y.: Ditto-nerf: diffusion-based iterative text to omni-directional 3d model. arXiv preprint arXiv:2304.02827 (2023) Seo, H., Kim, H., Kim, G., Chun, S.Y.: Ditto-nerf: diffusion-based iterative text to omni-directional 3d model. arXiv preprint arXiv:​2304.​02827 (2023)
65.
go back to reference Sun, Y., et al.: iComMa: inverting 3D gaussians splatting for camera pose estimation via comparing and matching. arXiv preprint arXiv:2312.09031 (2023) Sun, Y., et al.: iComMa: inverting 3D gaussians splatting for camera pose estimation via comparing and matching. arXiv preprint arXiv:​2312.​09031 (2023)
66.
go back to reference Szymanowicz, S., Rupprecht, C., Vedaldi, A.: Splatter image: ultra-fast single-view 3D reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10208–10217 (2024) Szymanowicz, S., Rupprecht, C., Vedaldi, A.: Splatter image: ultra-fast single-view 3D reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10208–10217 (2024)
68.
go back to reference Tristram, F., Gasperini, S., Tombari, F., Navab, N., Busam, B.: Re-nerfing: enforcing geometric constraints on neural radiance fields through novel views synthesis. In: arXiv preprint, under review (2023) Tristram, F., Gasperini, S., Tombari, F., Navab, N., Busam, B.: Re-nerfing: enforcing geometric constraints on neural radiance fields through novel views synthesis. In: arXiv preprint, under review (2023)
69.
go back to reference Truong, P., Danelljan, M., Timofte, R., Van Gool, L.: PDC-Net+: enhanced probabilistic dense correspondence network. IEEE Trans. Pattern Anal. Mach. Intell. (2023) Truong, P., Danelljan, M., Timofte, R., Van Gool, L.: PDC-Net+: enhanced probabilistic dense correspondence network. IEEE Trans. Pattern Anal. Mach. Intell. (2023)
70.
go back to reference Truong, P., Rakotosaona, M.J., Manhardt, F., Tombari, F.: Sparf: neural radiance fields from sparse and noisy poses. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR (2023) Truong, P., Rakotosaona, M.J., Manhardt, F., Tombari, F.: Sparf: neural radiance fields from sparse and noisy poses. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR (2023)
71.
go back to reference Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF: structured view-dependent appearance for neural radiance fields. In: CVPR, pp. 5481–5490. IEEE (2022) Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF: structured view-dependent appearance for neural radiance fields. In: CVPR, pp. 5481–5490. IEEE (2022)
72.
go back to reference Wang, P., Zhao, L., Ma, R., Liu, P.: Bad-nerf: bundle adjusted deblur neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4170–4179 (2023) Wang, P., Zhao, L., Ma, R., Liu, P.: Bad-nerf: bundle adjusted deblur neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4170–4179 (2023)
73.
go back to reference Wang, S., Leroy, V., Cabon, Y., Chidlovskii, B., Revaud, J.: DUSt3r: geometric 3D vision made easy (2023) Wang, S., Leroy, V., Cabon, Y., Chidlovskii, B., Revaud, J.: DUSt3r: geometric 3D vision made easy (2023)
74.
go back to reference Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRef Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRef
75.
go back to reference Wang, Z., Wu, S., Xie, W., Chen, M., Prisacariu, V.A.: NeRF\(--\): neural radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064 (2021) Wang, Z., Wu, S., Xie, W., Chen, M., Prisacariu, V.A.: NeRF\(--\): neural radiance fields without known camera parameters. arXiv preprint arXiv:​2102.​07064 (2021)
76.
go back to reference Wu, R., et al.: ReconFusion: 3D reconstruction with diffusion priors. arXiv (2023) Wu, R., et al.: ReconFusion: 3D reconstruction with diffusion priors. arXiv (2023)
77.
go back to reference Xia, Y., Tang, H., Timofte, R., Van Gool, L.: SiNeRF: sinusoidal neural radiance fields for joint pose estimation and scene reconstruction. arXiv preprint arXiv:2210.04553 (2022) Xia, Y., Tang, H., Timofte, R., Van Gool, L.: SiNeRF: sinusoidal neural radiance fields for joint pose estimation and scene reconstruction. arXiv preprint arXiv:​2210.​04553 (2022)
78.
go back to reference Xiong, H., Muttukuru, S., Upadhyay, R., Chari, P., Kadambi, A.: SparseGS: real-time 360 \(^\circ \) sparse view synthesis using gaussian splatting. arXiv preprint arXiv:2312.00206 (2023) Xiong, H., Muttukuru, S., Upadhyay, R., Chari, P., Kadambi, A.: SparseGS: real-time 360 \(^\circ \) sparse view synthesis using gaussian splatting. arXiv preprint arXiv:​2312.​00206 (2023)
79.
go back to reference Yang, J., Pavone, M., Wang, Y.: FreeNeRF: improving few-shot neural rendering with free frequency regularization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR) (2023) Yang, J., Pavone, M., Wang, Y.: FreeNeRF: improving few-shot neural rendering with free frequency regularization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (CVPR) (2023)
80.
go back to reference Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 767–783 (2018) Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 767–783 (2018)
81.
go back to reference Yao, Y., Luo, Z., Li, S., Shen, T., Fang, T., Quan, L.: Recurrent MVSNet for high-resolution multi-view stereo depth inference. In: CVPR, pp. 5525–5534 (2019) Yao, Y., Luo, Z., Li, S., Shen, T., Fang, T., Quan, L.: Recurrent MVSNet for high-resolution multi-view stereo depth inference. In: CVPR, pp. 5525–5534 (2019)
82.
go back to reference Yin, Z., Shi, J.: GeoNet: unsupervised learning of dense depth, optical flow and camera pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1983–1992 (2018) Yin, Z., Shi, J.: GeoNet: unsupervised learning of dense depth, optical flow and camera pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1983–1992 (2018)
83.
go back to reference Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: CVPR, pp. 4578–4587 (2021) Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: CVPR, pp. 4578–4587 (2021)
84.
go back to reference Yu, Z., Gao, S.: Fast-MVSNet: sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement. In: CVPR, pp. 1949–1958 (2020) Yu, Z., Gao, S.: Fast-MVSNet: sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement. In: CVPR, pp. 1949–1958 (2020)
85.
go back to reference Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018) Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
86.
87.
go back to reference Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5745–5753 (2019) Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5745–5753 (2019)
88.
go back to reference Zhu, H., He, T., Chen, Z.: CMC: few-shot novel view synthesis via cross-view multiplane consistency. arXiv preprint arXiv:2402.16407 (2024) Zhu, H., He, T., Chen, Z.: CMC: few-shot novel view synthesis via cross-view multiplane consistency. arXiv preprint arXiv:​2402.​16407 (2024)
89.
go back to reference Zhu, Z., Fan, Z., Jiang, Y., Wang, Z.: FSGS: real-time few-shot view synthesis using gaussian splatting. arXiv preprint arXiv:2312.00451 (2023) Zhu, Z., Fan, Z., Jiang, Y., Wang, Z.: FSGS: real-time few-shot view synthesis using gaussian splatting. arXiv preprint arXiv:​2312.​00451 (2023)
90.
go back to reference Zhu, Z., et al.: NICE-SLAM: neural implicit scalable encoding for slam. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12786–12796 (2022) Zhu, Z., et al.: NICE-SLAM: neural implicit scalable encoding for slam. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12786–12796 (2022)
Metadata
Title
TrackNeRF: Bundle Adjusting NeRF from Sparse and Noisy Views via Feature Tracks
Authors
Jinjie Mai
Wenxuan Zhu
Sara Rojas
Jesus Zarzar
Abdullah Hamdi
Guocheng Qian
Bing Li
Silvio Giancola
Bernard Ghanem
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-73254-6_27

Premium Partner