Skip to main content
Top
Published in: Wireless Networks 3/2020

07-11-2019

Traffic big data assisted V2X communications toward smart transportation

Authors: Chang An, Celimuge Wu

Published in: Wireless Networks | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to enable smart transportation, an efficient vehicle-to-everything (V2X) communication scheme is required. However, due to the mobility of vehicles and temporal varying features of vehicular environment, it is challenging to design an efficient communication scheme for vehicular networks. In this paper, we first give a review on the recent research efforts for solving communication challenges in vehicular networks, and then propose a traffic Big Data Assisted Communication scheme, BDAC, for vehicular networks. The proposed scheme uses past traffic big data to estimate the vehicle density and velocity, and then uses the prediction results to improve the V2X communications. We implement the proposed scheme in a multi-hop broadcast protocol to show the advantage of the proposed scheme by comparing with other baselines.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wu, C., Liu, Z., Zhang, D., Yoshinaga, T., & Ji, Y. (2018). Spatial intelligence towards trustworthy vehicular IoT. IEEE Communications Magazine, 56(10), 22–27.CrossRef Wu, C., Liu, Z., Zhang, D., Yoshinaga, T., & Ji, Y. (2018). Spatial intelligence towards trustworthy vehicular IoT. IEEE Communications Magazine, 56(10), 22–27.CrossRef
2.
go back to reference Wu, J., Zou, L., Zhao, L., Al-Dubai, A., Mackenzie, L., & Min, G. (2019). A multi-UAV clustering strategy for reducing insecure communication range. Computer Networks, 158(10), 132–142.CrossRef Wu, J., Zou, L., Zhao, L., Al-Dubai, A., Mackenzie, L., & Min, G. (2019). A multi-UAV clustering strategy for reducing insecure communication range. Computer Networks, 158(10), 132–142.CrossRef
3.
go back to reference Wu, C., Yoshinaga, T., Ji, Y., Murase, T., & Zhang, Y. (2017). A reinforcement learning-based data storage scheme for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 66(7), 6336–6348.CrossRef Wu, C., Yoshinaga, T., Ji, Y., Murase, T., & Zhang, Y. (2017). A reinforcement learning-based data storage scheme for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 66(7), 6336–6348.CrossRef
4.
go back to reference Goudarzi, F., & Asgari, H. (2017). Non-cooperative beacon rate and awareness control for VANETs. IEEE Access, 5, 16858–16870.CrossRef Goudarzi, F., & Asgari, H. (2017). Non-cooperative beacon rate and awareness control for VANETs. IEEE Access, 5, 16858–16870.CrossRef
5.
go back to reference Lyu, F., Cheng, N., Zhou, H., Xu, W., Shi, W., Chen, J., et al. (2018). DBCC: Leveraging link perception for distributed beacon congestion control in VANETs. IEEE IoT Journal, 6(5), 4237–4249. Lyu, F., Cheng, N., Zhou, H., Xu, W., Shi, W., Chen, J., et al. (2018). DBCC: Leveraging link perception for distributed beacon congestion control in VANETs. IEEE IoT Journal, 6(5), 4237–4249.
6.
go back to reference Dressler, F., Klingler, F., Sommer, C., & Cohen, R. (2018). Not all VANET broadcasts are the same: context-aware class based broadcast. IEEE/ACM Transactions on Networking, 26(1), 17–30.CrossRef Dressler, F., Klingler, F., Sommer, C., & Cohen, R. (2018). Not all VANET broadcasts are the same: context-aware class based broadcast. IEEE/ACM Transactions on Networking, 26(1), 17–30.CrossRef
7.
go back to reference Wu, C., Chen, X., Ji, Y., Liu, F., Ohzahata, S., Yoshinaga, T., et al. (2015). Packet size-aware broadcasting in VANETs with fuzzy logic and RL-based parameter adaptation. IEEE Access, 3, 2481–2491.CrossRef Wu, C., Chen, X., Ji, Y., Liu, F., Ohzahata, S., Yoshinaga, T., et al. (2015). Packet size-aware broadcasting in VANETs with fuzzy logic and RL-based parameter adaptation. IEEE Access, 3, 2481–2491.CrossRef
8.
go back to reference Wu, C., Ohzahata, S., & Kato, T. (2012). VANET broadcast protocol based on fuzzy logic and lightweight retransmission mechanism. IEICE Transactions on Communications, 95–B(2), 415–425.CrossRef Wu, C., Ohzahata, S., & Kato, T. (2012). VANET broadcast protocol based on fuzzy logic and lightweight retransmission mechanism. IEICE Transactions on Communications, 95–B(2), 415–425.CrossRef
10.
go back to reference Wisitpongphan, N., & Tonguz, K. O. (2007). Broadcast storm mitigation techniques in vehicular ad hoc networks. IEEE Wireless Communications, 14(6), 84–94.CrossRef Wisitpongphan, N., & Tonguz, K. O. (2007). Broadcast storm mitigation techniques in vehicular ad hoc networks. IEEE Wireless Communications, 14(6), 84–94.CrossRef
11.
go back to reference Tahmasbi-Sarvestani, A., Fallah, Y. P., & Kulathumani, V. (2015). Network-aware double-layer distance-dependent broadcast protocol for VANETs. IEEE Transactions on Vehicular Technology, 64(12), 5536–5546.CrossRef Tahmasbi-Sarvestani, A., Fallah, Y. P., & Kulathumani, V. (2015). Network-aware double-layer distance-dependent broadcast protocol for VANETs. IEEE Transactions on Vehicular Technology, 64(12), 5536–5546.CrossRef
12.
go back to reference Shah, S. S., Malik, A. W., Rahman, A. U., Iqbal, S., & Khan, S. U. (2019). Time barrier-based emergency message dissemination in vehicular ad-hoc networks. IEEE Access, 7, 16494–16503.CrossRef Shah, S. S., Malik, A. W., Rahman, A. U., Iqbal, S., & Khan, S. U. (2019). Time barrier-based emergency message dissemination in vehicular ad-hoc networks. IEEE Access, 7, 16494–16503.CrossRef
13.
go back to reference Jia, K., Hou, Y., Niu, K., Dong, C., & He, Z. (2019). The delay-constraint broadcast combined with resource reservation mechanism and field test in VANET. IEEE Access, 7, 59600–59612.CrossRef Jia, K., Hou, Y., Niu, K., Dong, C., & He, Z. (2019). The delay-constraint broadcast combined with resource reservation mechanism and field test in VANET. IEEE Access, 7, 59600–59612.CrossRef
15.
go back to reference Li, P., Zhang, T., Huang, C., Chen, X., & Fu, B. (2017). RSU-assisted geocast in vehicular ad hoc networks. IEEE Wireless Communications, 24(1), 53–59.CrossRef Li, P., Zhang, T., Huang, C., Chen, X., & Fu, B. (2017). RSU-assisted geocast in vehicular ad hoc networks. IEEE Wireless Communications, 24(1), 53–59.CrossRef
16.
go back to reference Zhang, F., Jin, B., Wang, Z., Liu, H., Hu, J., & Zhang, L. (2016). On geocasting over urban bus-based networks by mining trajectories. IEEE Transactions on Intelligent Transportation Systems, 17(6), 1734–1747.CrossRef Zhang, F., Jin, B., Wang, Z., Liu, H., Hu, J., & Zhang, L. (2016). On geocasting over urban bus-based networks by mining trajectories. IEEE Transactions on Intelligent Transportation Systems, 17(6), 1734–1747.CrossRef
17.
go back to reference Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738–1762.CrossRef Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738–1762.CrossRef
18.
go back to reference Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., & Bennis, M. (2019). Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet of Things Journal, 6(3), 4005–4018.CrossRef Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., & Bennis, M. (2019). Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet of Things Journal, 6(3), 4005–4018.CrossRef
19.
go back to reference Hassan, N., Yau, K. A., & Wu, C. (2019). Edge computing in 5G: A review. IEEE Access, 7, 127276–127289.CrossRef Hassan, N., Yau, K. A., & Wu, C. (2019). Edge computing in 5G: A review. IEEE Access, 7, 127276–127289.CrossRef
20.
go back to reference Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., & Wang, W. (2017). A survey on mobile edge networks: Convergence of computing, caching and communications. IEEE Access, 5, 6757–6779.CrossRef Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., & Wang, W. (2017). A survey on mobile edge networks: Convergence of computing, caching and communications. IEEE Access, 5, 6757–6779.CrossRef
21.
go back to reference Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., & Shi, W. (2019). Edge computing for autonomous driving: Opportunities and challenges. Proceedings of the IEEE, 107(8), 1697–1716.CrossRef Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., & Shi, W. (2019). Edge computing for autonomous driving: Opportunities and challenges. Proceedings of the IEEE, 107(8), 1697–1716.CrossRef
22.
go back to reference Khattak, H. A., Islam, S. U., Din, I. U., & Guizani, M. (2019). Integrating fog computing with VANETs: A consumer perspective. IEEE Communications Standards Magazine, 3(1), 19–25.CrossRef Khattak, H. A., Islam, S. U., Din, I. U., & Guizani, M. (2019). Integrating fog computing with VANETs: A consumer perspective. IEEE Communications Standards Magazine, 3(1), 19–25.CrossRef
23.
go back to reference Peng, H., Ye, Q., & Shen, X. S. (2019). SDN-based resource management for autonomous vehicular networks: A multi-access edge computing approach. IEEE Wireless Communications, 26(4), 156–162.CrossRef Peng, H., Ye, Q., & Shen, X. S. (2019). SDN-based resource management for autonomous vehicular networks: A multi-access edge computing approach. IEEE Wireless Communications, 26(4), 156–162.CrossRef
24.
go back to reference Hu, Q., Wu, C., Zhao, X., Chen, X., Ji, Y., & Yoshinaga, T. (2017). Vehicular multi-access edge computing with licensed sub-6 GHz, IEEE 802.11p and mmWave. IEEE Access, 6, 1995–2004.CrossRef Hu, Q., Wu, C., Zhao, X., Chen, X., Ji, Y., & Yoshinaga, T. (2017). Vehicular multi-access edge computing with licensed sub-6 GHz, IEEE 802.11p and mmWave. IEEE Access, 6, 1995–2004.CrossRef
25.
go back to reference Hao, Y., Miao, Y., Hu, L., Hossain, M. S., Muhammad, G., & Amin, S. U. (2019). Smart-Edge-CoCaCo: AI-enabled smart edge with joint computation, caching, and communication in heterogeneous IoT. IEEE Network, 33(2), 58–64.CrossRef Hao, Y., Miao, Y., Hu, L., Hossain, M. S., Muhammad, G., & Amin, S. U. (2019). Smart-Edge-CoCaCo: AI-enabled smart edge with joint computation, caching, and communication in heterogeneous IoT. IEEE Network, 33(2), 58–64.CrossRef
26.
go back to reference Wu, C., Chen, X., Yoshinaga, T., Ji, Y., & Zhang, Y. (2019). Integrating licensed and unlicensed spectrum in the internet of vehicles with mobile edge computing. IEEE Network, 33(4), 48–53.CrossRef Wu, C., Chen, X., Yoshinaga, T., Ji, Y., & Zhang, Y. (2019). Integrating licensed and unlicensed spectrum in the internet of vehicles with mobile edge computing. IEEE Network, 33(4), 48–53.CrossRef
28.
go back to reference Cui, J., Cao, S., Chang, Y., Wu, L., Liu, D., & Yang, Y. (2019). An adaptive spray and wait routing algorithm based on quality of node in delay tolerant network. IEEE Access, 7, 35274–35286.CrossRef Cui, J., Cao, S., Chang, Y., Wu, L., Liu, D., & Yang, Y. (2019). An adaptive spray and wait routing algorithm based on quality of node in delay tolerant network. IEEE Access, 7, 35274–35286.CrossRef
29.
go back to reference Chen, X., Wu, C., Bennis, M., Zhao, Z., & Han, Z. (2019). Learning to entangle radio resources in vehicular communications: An oblivious game-theoretic perspective. IEEE Transactions on Vehicular Technology, 68(5), 4262–4274.CrossRef Chen, X., Wu, C., Bennis, M., Zhao, Z., & Han, Z. (2019). Learning to entangle radio resources in vehicular communications: An oblivious game-theoretic perspective. IEEE Transactions on Vehicular Technology, 68(5), 4262–4274.CrossRef
30.
go back to reference Chen, J., & Ran, X. (2019). Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8), 1655–1674.CrossRef Chen, J., & Ran, X. (2019). Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8), 1655–1674.CrossRef
31.
go back to reference Dai, Y., Xu, D., Maharjan, S., Qiao, G., & Zhang, Y. (2019). Artificial intelligence empowered edge computing and caching for internet of vehicles. IEEE Network, 26(3), 12–18. Dai, Y., Xu, D., Maharjan, S., Qiao, G., & Zhang, Y. (2019). Artificial intelligence empowered edge computing and caching for internet of vehicles. IEEE Network, 26(3), 12–18.
32.
go back to reference Liu, G., Xu, Y., He, Z., Rao, Y., Xia, J., & Fan, L. (2019). Deep learning-based channel prediction for edge computing networks toward intelligent connected vehicles. IEEE Access, 7, 114487–114495.CrossRef Liu, G., Xu, Y., He, Z., Rao, Y., Xia, J., & Fan, L. (2019). Deep learning-based channel prediction for edge computing networks toward intelligent connected vehicles. IEEE Access, 7, 114487–114495.CrossRef
33.
go back to reference Zhou, Z., Yu, H., Xu, C., Zhang, Y., Mumtaz, S., & Rodriguez, J. (2018). Dependable content distribution in D2D-based cooperative vehicular networks: A big data-integrated coalition game approach. IEEE Transactions on Intelligent Transportation Systems, 19(3), 953–964.CrossRef Zhou, Z., Yu, H., Xu, C., Zhang, Y., Mumtaz, S., & Rodriguez, J. (2018). Dependable content distribution in D2D-based cooperative vehicular networks: A big data-integrated coalition game approach. IEEE Transactions on Intelligent Transportation Systems, 19(3), 953–964.CrossRef
34.
go back to reference Lin, K., Luo, J., Hu, L., Hossain, M. S., & Ghoneim, A. (2017). Localization based on social big data analysis in the vehicular networks. IEEE Transactions on Industrial Informatics, 13(4), 1932–1940.CrossRef Lin, K., Luo, J., Hu, L., Hossain, M. S., & Ghoneim, A. (2017). Localization based on social big data analysis in the vehicular networks. IEEE Transactions on Industrial Informatics, 13(4), 1932–1940.CrossRef
35.
go back to reference Cheng, N., Lyu, F., Chen, J., Xu, W., Zhou, H., Zhang, S., et al. (2018). Big data driven vehicular networks. IEEE Network, 32(6), 160–167.CrossRef Cheng, N., Lyu, F., Chen, J., Xu, W., Zhou, H., Zhang, S., et al. (2018). Big data driven vehicular networks. IEEE Network, 32(6), 160–167.CrossRef
37.
go back to reference Bai, S., et al. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271. Bai, S., et al. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:​1803.​01271.
38.
go back to reference Wang, Y., & Tian, F. (2016). Recurrent residual learning for sequence classification. In EMNLP (pp. 938–943). Wang, Y., & Tian, F. (2016). Recurrent residual learning for sequence classification. In EMNLP (pp. 938–943).
39.
go back to reference Guleng, S., Wu, C., Yoshinaga, T., & Ji, Y. (2019). Traffic big data assisted broadcast in vehicular networks. In Proceedings of ACM RACS, 5 pages. Guleng, S., Wu, C., Yoshinaga, T., & Ji, Y. (2019). Traffic big data assisted broadcast in vehicular networks. In Proceedings of ACM RACS, 5 pages.
41.
go back to reference Khan, A., Sadhu, S., & Yeleswarapu, M. (2009). A comparative analysis of DSRC and 802.11 over vehicular ad hoc networks. Project Report, University of California, Santa Barbara (pp. 1–8). Khan, A., Sadhu, S., & Yeleswarapu, M. (2009). A comparative analysis of DSRC and 802.11 over vehicular ad hoc networks. Project Report, University of California, Santa Barbara (pp. 1–8).
42.
go back to reference Bai, F., Sadagopan, N., & Helmy, A. (2003). Important: A framework to systematically analyze the impact of mobility on performance of routing protocols for adhoc networks. In 22nd Annual joint conference of the IEEE computer and communications societies, San Francisco, USA (pp. 825–835). Bai, F., Sadagopan, N., & Helmy, A. (2003). Important: A framework to systematically analyze the impact of mobility on performance of routing protocols for adhoc networks. In 22nd Annual joint conference of the IEEE computer and communications societies, San Francisco, USA (pp. 825–835).
43.
go back to reference Krajzewicz, D., Hertkorn, G., Rossel, C., & Wagner, P. (2002). SUMO (simulation of urban mobility): An open-source traffic simulation. In Proceedings of 4th middle east Symposium on simulation and modelling (MESM2002) (pp. 183–187). SCS European Publishing House. Krajzewicz, D., Hertkorn, G., Rossel, C., & Wagner, P. (2002). SUMO (simulation of urban mobility): An open-source traffic simulation. In Proceedings of 4th middle east Symposium on simulation and modelling (MESM2002) (pp. 183–187). SCS European Publishing House.
Metadata
Title
Traffic big data assisted V2X communications toward smart transportation
Authors
Chang An
Celimuge Wu
Publication date
07-11-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 3/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02181-6

Other articles of this Issue 3/2020

Wireless Networks 3/2020 Go to the issue