Skip to main content
Top

2024 | OriginalPaper | Chapter

Training Artificial Immune Networks as Standalone Generative Models for Realistic Data Synthesis

Authors : Siphesihle Philezwini Sithungu, Elizabeth Marie Ehlers

Published in: Intelligent Information Processing XII

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the innovative application of Artificial Immune Networks (AINs) as standalone generative models for realistic data synthesis. It begins by introducing Generative Artificial Intelligence (GAI) and its subfield, Generative Modelling, which aims to model data distributions to generate human-like content. The chapter then explores various techniques for Generative Modelling, including Maximum Likelihood Estimation, Boltzmann Machines, and Variational Autoencoders. The focus shifts to Generative Adversarial Networks (GANs), highlighting their success and the challenges they face, such as vanishing gradients and mode collapse. The core of the chapter introduces the concept of Artificial Immune Networks and their application in generative models. It presents the GAAINet prototype, which trains an AIN to learn a dataset's distribution and generate synthetic samples. The chapter provides a detailed overview of the GAAINet framework, including the generator and discriminator agents, their training processes, and the experimental results obtained. It compares the performance of GAAINet to first-generation GANs, showcasing the potential of AINs in generating human-readable synthetic samples. The chapter concludes by discussing future research directions and the promise of AIN-based generative models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
5.
go back to reference Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M.: Restricted boltzmann machine and deep belief network: tutorial and survey. arXiv preprint arXiv:2107.12521 (2021) Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M.: Restricted boltzmann machine and deep belief network: tutorial and survey. arXiv preprint arXiv:​2107.​12521 (2021)
6.
go back to reference Blunsom, P.: Hidden markov models. Lecture notes, August 15(18–19), 48 (2004) Blunsom, P.: Hidden markov models. Lecture notes, August 15(18–19), 48 (2004)
7.
go back to reference Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson (2021) Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson (2021)
10.
go back to reference Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol.Immunol. 125, 373–389 (1974) Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol.Immunol. 125, 373–389 (1974)
12.
go back to reference Diana, R.O.M., de Souza, S.R., Wanner, E.F., Filho, M.F.F.: Hybrid metaheuristic for combinatorial optimization based on immune network for optimization and VNS. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 251–258. GECCO 2017, Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3071178.3071269 Diana, R.O.M., de Souza, S.R., Wanner, E.F., Filho, M.F.F.: Hybrid metaheuristic for combinatorial optimization based on immune network for optimization and VNS. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 251–258. GECCO 2017, Association for Computing Machinery, New York, NY, USA (2017). https://​doi.​org/​10.​1145/​3071178.​3071269
13.
go back to reference Agiza, H.N., Hassan, A.E., Salah, A.M.: An improved version of opt-aiNET algorithm (i-opt-aiNET) for function optimization. IJCSNS Int. J. Comput. Sci. Netw. Secur. 11(3), 80–85 (2011) Agiza, H.N., Hassan, A.E., Salah, A.M.: An improved version of opt-aiNET algorithm (i-opt-aiNET) for function optimization. IJCSNS Int. J. Comput. Sci. Netw. Secur. 11(3), 80–85 (2011)
14.
go back to reference Souza, S.S., Romero, R., Franco, J.F.: Artificial immune networks copt-aiNET and opt- aiNET applied to the reconfiguration problem of radial electrical distribution systems. Electr. Power Syst. Res. 119, 304–312 (2015)CrossRef Souza, S.S., Romero, R., Franco, J.F.: Artificial immune networks copt-aiNET and opt- aiNET applied to the reconfiguration problem of radial electrical distribution systems. Electr. Power Syst. Res. 119, 304–312 (2015)CrossRef
15.
go back to reference Kanwal, S., Khan, F., Alamri, S., Dashtipur, K., Gogate, M.: Covid-opt-aiNET: a clinical decision support system for COVID-19 detection. Int. J. Imaging Syst. Technol. 32(2), 444–461 (2022)CrossRef Kanwal, S., Khan, F., Alamri, S., Dashtipur, K., Gogate, M.: Covid-opt-aiNET: a clinical decision support system for COVID-19 detection. Int. J. Imaging Syst. Technol. 32(2), 444–461 (2022)CrossRef
16.
go back to reference Rassam, M.A., Maarof, M.A.: Artificial immune network clustering approach for anomaly intrusion detection. J. Adv. Inf. Technol. 3(3), 147–154 (2012) Rassam, M.A., Maarof, M.A.: Artificial immune network clustering approach for anomaly intrusion detection. J. Adv. Inf. Technol. 3(3), 147–154 (2012)
17.
go back to reference Yang, H., Guo, J., Deng, F.: Collaborative RFID intrusion detection with an artificial immune system. J. Intell. Inf. Syst.Intell. Inf. Syst. 36(1), 1–26 (2011)CrossRef Yang, H., Guo, J., Deng, F.: Collaborative RFID intrusion detection with an artificial immune system. J. Intell. Inf. Syst.Intell. Inf. Syst. 36(1), 1–26 (2011)CrossRef
18.
go back to reference Xiao, X., Zhang, R.R.: A network intrusion detection model based on artificial immune. In: Advanced Materials Research. vol. 361, pp. 687–690. Trans Tech Publ (2012) Xiao, X., Zhang, R.R.: A network intrusion detection model based on artificial immune. In: Advanced Materials Research. vol. 361, pp. 687–690. Trans Tech Publ (2012)
21.
go back to reference Sithungu, S.P., Ehlers, E.M.: GAAINet: a generative adversarial artificial immune network model for intrusion detection in industrial IoT Systems. J. Adv. Inf. Technol. 13(5), 456–461 (2022) Sithungu, S.P., Ehlers, E.M.: GAAINet: a generative adversarial artificial immune network model for intrusion detection in industrial IoT Systems. J. Adv. Inf. Technol. 13(5), 456–461 (2022)
22.
go back to reference Sinn, M., Rawat, A.: Non-parametric estimation of jensen-shannon divergence in generative adversarial network training. In: Storkey, A., Perez-Cruz, F. (eds.) Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 84, pp. 642–651. PMLR (2018) Sinn, M., Rawat, A.: Non-parametric estimation of jensen-shannon divergence in generative adversarial network training. In: Storkey, A., Perez-Cruz, F. (eds.) Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 84, pp. 642–651. PMLR (2018)
23.
go back to reference Kivinen, J., Williams, C.: Multiple texture boltzmann machines. In: Lawrence, N.D., Girolami, M. (eds.) Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 22, pp. 638–646. PMLR, La Palma, Canary Islands (2012) Kivinen, J., Williams, C.: Multiple texture boltzmann machines. In: Lawrence, N.D., Girolami, M. (eds.) Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 22, pp. 638–646. PMLR, La Palma, Canary Islands (2012)
25.
go back to reference Tan, B., Peng, F.: Unsupervised query segmentation using generative language models and wikipedia. In: Proceedings of the 17th International Conference on World Wide Web, pp. 347–356. WWW 2008, Association for Computing Machinery, New York, NY, USA (2008). https://doi.org/10.1145/1367497.1367545 Tan, B., Peng, F.: Unsupervised query segmentation using generative language models and wikipedia. In: Proceedings of the 17th International Conference on World Wide Web, pp. 347–356. WWW 2008, Association for Computing Machinery, New York, NY, USA (2008). https://​doi.​org/​10.​1145/​1367497.​1367545
26.
go back to reference Tang, Y., Salakhutdinov, R., Hinton, G.: Deep lambertian networks (2012) Tang, Y., Salakhutdinov, R., Hinton, G.: Deep lambertian networks (2012)
27.
go back to reference Salakhutdinov, R., Larochelle, H.: Efficient learning of deep boltzmann machines. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 693–700. PMLR, Chia Laguna Resort, Sardinia, Italy (2010) Salakhutdinov, R., Larochelle, H.: Efficient learning of deep boltzmann machines. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 693–700. PMLR, Chia Laguna Resort, Sardinia, Italy (2010)
28.
go back to reference Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014) Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)
29.
go back to reference Salimans, T., et al.: Improved techniques for training GANs. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016) Salimans, T., et al.: Improved techniques for training GANs. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)
Metadata
Title
Training Artificial Immune Networks as Standalone Generative Models for Realistic Data Synthesis
Authors
Siphesihle Philezwini Sithungu
Elizabeth Marie Ehlers
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_20

Premium Partner