Skip to main content
Top

2013 | OriginalPaper | Chapter

Transcendental Methods in the Study of Algebraic Cycles with a Special Emphasis on Calabi–Yau Varieties

Author : James D. Lewis

Published in: Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We review the transcendental aspects of algebraic cycles, and explain how this relates to Calabi–Yau varieties. More precisely, after presenting a general overview, we begin with some rudimentary aspects of Hodge theory and algebraic cycles. We then introduce Deligne cohomology, as well as the generalized higher cycles due to Bloch that are connected to higher K-theory, and associated regulators. Finally, we specialize to the Calabi–Yau situation, and explain some recent developments in the field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Strict compatibility means that \(h({F}^{r}V _{1,\mathbf{C}}) = h(V _{1,\mathbf{C}}) \cap {F}^{r}V _{2,\mathbf{C}}\) and \(h(W_{\ell}V _{1,\mathbf{A}\otimes \mathbf{Q}}) = h(V _{1,\mathbf{A}\otimes \mathbf{Q}}) \cap W_{\ell}V _{2,\mathbf{A}\otimes \mathbf{Q}}\) for all r and . A nice explanation of Deligne’s proof of this fact can be found in [44], where a quick summary goes as follows: For any A-MHS V, V C has a C-splitting into a bigraded direct sum of complex vector spaces \({I}^{p,q} := {F}^{p} \cap W_{p+q} \cap \big [\overline{{F}^{q}} \cap W_{p+q} +\sum _{i\geq 2}\overline{{F}^{q-i+1}} \cap W_{p+q-i}\big]\), where one shows that \({F}^{r}V _{\mathbf{C}} = \oplus _{p\geq r} \oplus _{q}{I}^{p,q}\) and \(W_{\ell}V _{\mathbf{C}} = \oplus _{p+q\leq \ell}{I}^{p,q}\). Then by construction of I p, q , one has \(h({I}^{p,q}(V _{1,\mathbf{C}}) \subseteq {I}^{p,q}(V _{2,\mathbf{C}})\). Hence h preserves both the Hodge and complexified weight filtrations. Now use the fact that A ⊗ Q is a field to deduce that h preserves the weight filtration over A ⊗ Q.
 
2
The fact that a smooth connected Γ will suffice (as opposed to a [connected] chain of curves) in the definition of algebraic equivalence follows from the transitive property of algebraic equivalence (see [36] (p. 180)).
 
3
We remind the reader that for singular homology H  ∗  sing (U, Z) and ignoring twists, Poincaré duality gives the isomorphism \(H_{c}^{i}(U,\mathbf{Z}) \simeq H_{2d-i}^{sing}(U,\mathbf{Z})\), where H c i (U, Z) is cohomology with compact support; whereas \({H}^{i}(U,\mathbf{Z}) \simeq H_{2d-i}^{BM}(U,\mathbf{Z})\).
 
4
A special thanks to Rob de Jeu for supplying us this idea.
 
5
Matt Kerr informed us of an alternate and slick approach to this example via the definition given in Example 4.7(ii). Namely one need only add Tame\(\{z_{1}/z_{0},z_{2}/z_{0}\} = (-f_{0}^{-1},\ell_{0}) + (f_{1}^{-1},\ell_{1}) + (f_{2}^{-1},\ell_{2})\) to ξ to get the 2-torsion class ( − 1,  0), which is the same as ξ in CH2(P 2, 1).
 
6
Indeed first consider \((a,b) \in \Omega _{X}^{r} \oplus \Omega _{X}^{r-1}\ \mathop{\mapsto }\limits \delta \ (-da,db - a) \in \Omega _{X}^{r+1} \oplus \Omega _{X}^{r}\). Then δ(a, b) = (0, 0) ⇔ da = 0 & a = db ⇔ a = db. Therefore \(\ker \delta /\mathrm{Im}(0,d) \simeq \Omega _{X}^{r-1}/d\Omega _{X}^{r-2} = {\mathcal{H}}^{r-1}(\mathbf{A}_{\mathcal{D}}(r))\). Next, for j ≥ 1, \((a,b) \in \Omega _{X}^{r+j} \oplus \Omega _{X}^{r+j-1}\), δ(a, b) = 0 ⇔ (a, b) = δ( − b, 0).
 
7
The reader familiar with Deligne homology will see this definition as the same thing up to twist. Indeed this definition already incorporates Poincaré duality.
 
8
Y is a normal crossing divisor, which in local analytic coordinates (z 1, , z d ) on X, Y is given by z 1z  = 0, and so Ω X 1Y ⟩ has local frame \(\big\{dz_{1}/z_{1},\ldots,dz_{\ell}/z_{\ell},dz_{\ell+1},\ldots,dz_{d}\big\}\).
 
9
For compactly supported ω ∈ E U, c 2d − 1, and \(f \in \mathcal{O}_{U}^{\times }(U)\),
$$\displaystyle{\int _{U}\frac{df} {f} \wedge \omega =\int _{U}d\big(\log f\wedge \omega \big) -\int _{U\setminus {f}^{-1}[-\infty,0]}\log f \wedge d\omega = 2\pi \mathrm{i}\int _{{f}^{-1}[-\infty,0]}\omega + d[\log f](\omega ),}$$
where we use the principal branch of log.
 
10
The decision to consider the factor (2πi) − 1 is somewhat “political”, as reflected in the remark on page 2 of [32]. From a cohomological point of view, one works with Z(2) coefficient periods, whereas homologically, is it with Z(1) coefficients. This is neatly illustrated via the Poincaré duality isomorphism in (16).
 
11
Alternatively, taking Re\(\big({(2\pi \mathrm{i})}^{-1}\tilde{R}\big)\) gives the formula in (15), viz., with the factor (2π) − 1, right on the nose.
 
12
M. Asakura informed me of his work in [1], which includes this theorem as a special case. Further he provides an upper bound for the rank of the dlog image for variants of the family in Example 8.25.
 
Literature
1.
go back to reference M. Asakura, On dlog Image of K 2 of Elliptic Surface Minus Singular Fibers, preprint (2006) [arXiv:math/0511190v4] M. Asakura, On dlog Image of K 2 of Elliptic Surface Minus Singular Fibers, preprint (2006) [arXiv:math/0511190v4]
2.
go back to reference H. Bass, J. Tate, in The Milnor Ring of a Global Field, in Algebraic K-Theory II. Lecture Notes in Mathematics, vol. 342 (Springer, New York, 1972), pp. 349–446 H. Bass, J. Tate, in The Milnor Ring of a Global Field, in Algebraic K-Theory II. Lecture Notes in Mathematics, vol. 342 (Springer, New York, 1972), pp. 349–446
3.
go back to reference A. Beilinson, Notes on absolute Hodge cohomology, in Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory. Contemporary Mathematics, vol. 55, Part 1 (AMS, Providence 1986), pp. 35–68 A. Beilinson, Notes on absolute Hodge cohomology, in Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory. Contemporary Mathematics, vol. 55, Part 1 (AMS, Providence 1986), pp. 35–68
4.
go back to reference A. Beilinson, Higher regulators of modular curves, in Applications of K-Theory to Algebraic Geometry and Number Theory, Boulder, CO, 1983. Contemporary Mathematics, vol. 55 (AMS, Providence, 1986), pp. 1–34 A. Beilinson, Higher regulators of modular curves, in Applications of K-Theory to Algebraic Geometry and Number Theory, Boulder, CO, 1983. Contemporary Mathematics, vol. 55 (AMS, Providence, 1986), pp. 1–34
5.
go back to reference S. Bloch, Lectures on Algebraic Cycles. Duke University Mathematics Series, vol. IV (Duke University, Durham, 1980) S. Bloch, Lectures on Algebraic Cycles. Duke University Mathematics Series, vol. IV (Duke University, Durham, 1980)
8.
go back to reference J. Carlson, Extension of mixed Hodge structures, in Journées de Géométrie Algébrique d’Angers 1979 (Sijthoff and Nordhoff, The Netherlands, 1980), pp. 107–127 J. Carlson, Extension of mixed Hodge structures, in Journées de Géométrie Algébrique d’Angers 1979 (Sijthoff and Nordhoff, The Netherlands, 1980), pp. 107–127
9.
go back to reference X. Chen, J.D. Lewis, Noether-Lefschetz for K 1 of a certain class of surfaces. Bol. Soc. Mat. Mexicana (3) 10(1), 29–41 (2004) X. Chen, J.D. Lewis, Noether-Lefschetz for K 1 of a certain class of surfaces. Bol. Soc. Mat. Mexicana (3) 10(1), 29–41 (2004)
10.
11.
go back to reference X. Chen, J.D. Lewis, Density of rational curves on K3 surfaces. Math. Ann. [arXiv:1004.5167] (2011) X. Chen, J.D. Lewis, Density of rational curves on K3 surfaces. Math. Ann. [arXiv:1004.5167] (2011)
12.
go back to reference X. Chen, C. Doran, M. Kerr, J.D. Lewis, Higher normal functions, derivatives of normal functions, and elliptic fibrations (2011) (submitted) [arXiv:1108.2223] X. Chen, C. Doran, M. Kerr, J.D. Lewis, Higher normal functions, derivatives of normal functions, and elliptic fibrations (2011) (submitted) [arXiv:1108.2223]
13.
go back to reference C.H. Clemens, Homological equivalence, modulo algebraic equivalence, is not finitely generated. Publ. I.H.E.S. 58, 19–38 (1983) C.H. Clemens, Homological equivalence, modulo algebraic equivalence, is not finitely generated. Publ. I.H.E.S. 58, 19–38 (1983)
14.
go back to reference A. Collino, Griffiths’ infinitesimal invariant and higher K-theory on hyperelliptic jacobians. J. Algebr. Geom. 6, 393–415 (1997)MathSciNetMATH A. Collino, Griffiths’ infinitesimal invariant and higher K-theory on hyperelliptic jacobians. J. Algebr. Geom. 6, 393–415 (1997)MathSciNetMATH
15.
go back to reference R. de Jeu, J.D. Lewis, Beilinson’s Hodge conjecture for smooth varieties, J. of K-Theor. [arXiv:1104.4364] (2011) R. de Jeu, J.D. Lewis, Beilinson’s Hodge conjecture for smooth varieties, J. of K-Theor. [arXiv:1104.4364] (2011)
16.
go back to reference P. Deligne, Théorie de Hodge, II, III. Inst. Hautes Études Sci. Publ. Math. 40, 5–57 (1971); 44, 5–77 (1974) P. Deligne, Théorie de Hodge, II, III. Inst. Hautes Études Sci. Publ. Math. 40, 5–57 (1971); 44, 5–77 (1974)
17.
go back to reference P. Elbaz-Vincent, S. Müller-Stach, Milnor K-theory of rings, higher Chow groups and applications. Invent. Math. 148, 177–206 (2002)MathSciNetMATHCrossRef P. Elbaz-Vincent, S. Müller-Stach, Milnor K-theory of rings, higher Chow groups and applications. Invent. Math. 148, 177–206 (2002)MathSciNetMATHCrossRef
18.
go back to reference H. Esnault, K.H. Paranjape, Remarks on absolute de Rham and absolute Hodge cycles. C. R. Acad. Sci. Paris t 319, Serie I, 67–72 (1994) H. Esnault, K.H. Paranjape, Remarks on absolute de Rham and absolute Hodge cycles. C. R. Acad. Sci. Paris t 319, Serie I, 67–72 (1994)
19.
go back to reference H. Esnault, E. Viehweg, Deligne-Beilinson cohomology, in Beilinson’s Conjectures on Special Values of L-Functions, ed. by Rapoport, Schappacher, Schneider. Perspectives in Mathematics, vol. 4 (Academic, New York, 1988), pp. 43–91 H. Esnault, E. Viehweg, Deligne-Beilinson cohomology, in Beilinson’s Conjectures on Special Values of L-Functions, ed. by Rapoport, Schappacher, Schneider. Perspectives in Mathematics, vol. 4 (Academic, New York, 1988), pp. 43–91
20.
go back to reference R. Friedman, R. Laza, Semi-algebraic horizontal subvarieties of Calabi-Yau type, preprint 2011 [arXive:1109.5632v1] R. Friedman, R. Laza, Semi-algebraic horizontal subvarieties of Calabi-Yau type, preprint 2011 [arXive:1109.5632v1]
21.
go back to reference B.B. Gordon, J.D. Lewis, Indecomposable higher Chow cycles, in The Arithmetic and Geometry of Algebraic Cycles, Banff, AB, 1998. Nato Science Series C: Mathematical and Physical Sciences, vol. 548 (Kluwer, Dordrecht, 2000), pp. 193–224 B.B. Gordon, J.D. Lewis, Indecomposable higher Chow cycles, in The Arithmetic and Geometry of Algebraic Cycles, Banff, AB, 1998. Nato Science Series C: Mathematical and Physical Sciences, vol. 548 (Kluwer, Dordrecht, 2000), pp. 193–224
22.
go back to reference M. Green, Griffiths’ infinitesimal invariant and the Abel-Jacobi map. J. Differ. Geom. 29, 545–555 (1989)MATH M. Green, Griffiths’ infinitesimal invariant and the Abel-Jacobi map. J. Differ. Geom. 29, 545–555 (1989)MATH
23.
go back to reference M. Green, P. Griffiths, The regulator map for a general curve, in Symposium in Honor of C.H. Clemens, Salt Lake City, UT, 2000. Contemporary Mathematics, vol. 312 (American Mathematical Society, Providence, 2002), pp. 117–127 M. Green, P. Griffiths, The regulator map for a general curve, in Symposium in Honor of C.H. Clemens, Salt Lake City, UT, 2000. Contemporary Mathematics, vol. 312 (American Mathematical Society, Providence, 2002), pp. 117–127
24.
go back to reference M. Green, S. Müller-Stach, Algebraic cycles on a general complete intersection of high multi-degree of a smooth projective variety. Comp. Math. 100(3), 305–309 (1996)MATH M. Green, S. Müller-Stach, Algebraic cycles on a general complete intersection of high multi-degree of a smooth projective variety. Comp. Math. 100(3), 305–309 (1996)MATH
25.
go back to reference P. Griffiths, J. Harris, Principles of Algebraic Geometry (Wiley, New York, 1978)MATH P. Griffiths, J. Harris, Principles of Algebraic Geometry (Wiley, New York, 1978)MATH
26.
go back to reference P.A. Griffiths, On the periods of certain rational integrals: I and II. Ann. Math. 90, 460–541 (1969)MATHCrossRef P.A. Griffiths, On the periods of certain rational integrals: I and II. Ann. Math. 90, 460–541 (1969)MATHCrossRef
27.
go back to reference U. Jannsen, Deligne cohomology, Hodge\(-\mathcal{D}-\)conjecture, and motives, in Beilinson’s Conjectures on Special Values of L-Functions, ed. by Rapoport, Schappacher, Schneider. Perspectives in Mathematics, vol. 4 (Academic, New York, 1988), pp. 305–372 U. Jannsen, Deligne cohomology, Hodge\(-\mathcal{D}-\)conjecture, and motives, in Beilinson’s Conjectures on Special Values of L-Functions, ed. by Rapoport, Schappacher, Schneider. Perspectives in Mathematics, vol. 4 (Academic, New York, 1988), pp. 305–372
28.
go back to reference U. Jannsen, in Mixed Motives and Algebraic K-Theory. Lecture Notes in Mathematics, vol. 1000 (Springer, Berlin, 1990) U. Jannsen, in Mixed Motives and Algebraic K-Theory. Lecture Notes in Mathematics, vol. 1000 (Springer, Berlin, 1990)
29.
go back to reference B. Kahn, Groupe de Brauer et (2, 1)-cycles indecomposables. Preprint (2011) B. Kahn, Groupe de Brauer et (2, 1)-cycles indecomposables. Preprint (2011)
30.
go back to reference K. Kato, Milnor K-theory and the Chow group of zero cycles. Contemp. Math. Part I 55, 241–253 (1986)CrossRef K. Kato, Milnor K-theory and the Chow group of zero cycles. Contemp. Math. Part I 55, 241–253 (1986)CrossRef
32.
34.
35.
go back to reference M. Levine, Localization on singular varieties. Invent. Math. 31, 423–464 (1988)CrossRef M. Levine, Localization on singular varieties. Invent. Math. 31, 423–464 (1988)CrossRef
36.
go back to reference J.D. Lewis, in A Survey of the Hodge Conjecture, 2nd edn. Appendix B by B. Brent Gordon. CRM Monograph Series, vol. 10 (American Mathematical Society, Providence, 1999), pp. xvi+368 J.D. Lewis, in A Survey of the Hodge Conjecture, 2nd edn. Appendix B by B. Brent Gordon. CRM Monograph Series, vol. 10 (American Mathematical Society, Providence, 1999), pp. xvi+368
37.
go back to reference J.D. Lewis, Lectures on algebraic cycles. Bol. Soc. Mat. Mexicana (3) 7(2), 137–192 (2001) J.D. Lewis, Lectures on algebraic cycles. Bol. Soc. Mat. Mexicana (3) 7(2), 137–192 (2001)
38.
go back to reference J.D. Lewis, Real regulators on Milnor complexes. K-Theory 25(3), 277–298 (2002) J.D. Lewis, Real regulators on Milnor complexes. K-Theory 25(3), 277–298 (2002)
39.
go back to reference J.D. Lewis, Regulators of Chow cycles on Calabi-Yau varieties, in Calabi-Yau Varieties and Mirror Symmetry, Toronto, ON, 2001. Fields Institute Communications, vol. 38 (American Mathematical Society, Providence, 2003), pp. 87–117 J.D. Lewis, Regulators of Chow cycles on Calabi-Yau varieties, in Calabi-Yau Varieties and Mirror Symmetry, Toronto, ON, 2001. Fields Institute Communications, vol. 38 (American Mathematical Society, Providence, 2003), pp. 87–117
40.
go back to reference S. Müller-Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces. J. Algebr. Geom. 6, 513–543 (1997)MATH S. Müller-Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces. J. Algebr. Geom. 6, 513–543 (1997)MATH
41.
go back to reference S. Müller-Stach, Algebraic cycle complexes, in Proceedings of the NATO Advanced Study Institute on the Arithmetic and Geometry of Algebraic Cycles, vol. 548, ed. by J.D. Lewis, N. Yui, B. Gordon, S. Müller-Stach, S. Saito (Kluwer, Dordrecht, 2000), pp. 285–305 S. Müller-Stach, Algebraic cycle complexes, in Proceedings of the NATO Advanced Study Institute on the Arithmetic and Geometry of Algebraic Cycles, vol. 548, ed. by J.D. Lewis, N. Yui, B. Gordon, S. Müller-Stach, S. Saito (Kluwer, Dordrecht, 2000), pp. 285–305
42.
go back to reference D. Ramakrishnan, Regulators, algebraic cycles, and values of L-functions, in Contemporary Mathematics, vol. 83 (American Mathematical Society, Providence, 1989), pp. 183–310 D. Ramakrishnan, Regulators, algebraic cycles, and values of L-functions, in Contemporary Mathematics, vol. 83 (American Mathematical Society, Providence, 1989), pp. 183–310
44.
go back to reference J.H.M. Steenbrink, in A Summary of Mixed Hodge Theory, Motives, Seattle, WA, 1991. Proceedings of Symposia in Pure Mathematics, vol. 55, Part 1 (American Mathematical Society, Providence, 1994), pp. 31–41 J.H.M. Steenbrink, in A Summary of Mixed Hodge Theory, Motives, Seattle, WA, 1991. Proceedings of Symposia in Pure Mathematics, vol. 55, Part 1 (American Mathematical Society, Providence, 1994), pp. 31–41
45.
Metadata
Title
Transcendental Methods in the Study of Algebraic Cycles with a Special Emphasis on Calabi–Yau Varieties
Author
James D. Lewis
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6403-7_2

Premium Partner