Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 11/2019

11-09-2019 | Original Article

Transfer channel pruning for compressing deep domain adaptation models

Authors: Chaohui Yu, Jindong Wang, Yiqiang Chen, Xin Qin

Published in: International Journal of Machine Learning and Cybernetics | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep unsupervised domain adaptation has recently received increasing attention from researchers. However, existing methods are computationally intensive due to the computational cost of convolutional neural networks (CNN) adopted by most work. There is no effective network compression method for such problem. In this paper, we propose a unified transfer channel pruning (TCP) method for accelerating deep unsupervised domain adaptation (UDA) models. TCP method is capable of compressing the deep UDA model by pruning less important channels while simultaneously learning transferable features by reducing the cross-domain distribution divergence. Therefore, it reduces the impact of negative transfer and maintains competitive performance on the target task. To the best of our knowledge, TCP method is the first approach that aims at accelerating deep unsupervised domain adaptation models. TCP method is validated on two main kinds of UDA methods: the discrepancy-based methods and the adversarial-based methods. In addition, it is validated on two benchmark datasets: Office-31 and ImageCLEF-DA with two common backbone networks - VGG16 and ResNet50. Experimental results demonstrate that our TCP method achieves comparable or better classification accuracy than other comparison methods while significantly reducing the computational cost. To be more specific, in VGG16, we get even higher accuracy after pruning 26% floating point operations (FLOPs); in ResNet50, we also get higher accuracy on half of the tasks after pruning 12% FLOPs for both discrepancy-based methods and adversarial-based methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828CrossRef
2.
go back to reference Borgwardt KM, Gretton A, Rasch MJ, Kriegel HP, Schölkopf B, Smola AJ (2006) Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14):e49–e57CrossRef Borgwardt KM, Gretton A, Rasch MJ, Kriegel HP, Schölkopf B, Smola AJ (2006) Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14):e49–e57CrossRef
3.
go back to reference Chollet F (2017) Xception: deep learning with depthwise separable convolutions. arXiv preprint pp. 1610–02357 Chollet F (2017) Xception: deep learning with depthwise separable convolutions. arXiv preprint pp. 1610–02357
4.
go back to reference Denton EL, Zaremba W, Bruna J, LeCun Y, Fergus R (2014) Exploiting linear structure within convolutional networks for efficient evaluation. In: Advances in neural information processing systems, pp 1269–1277 Denton EL, Zaremba W, Bruna J, LeCun Y, Fergus R (2014) Exploiting linear structure within convolutional networks for efficient evaluation. In: Advances in neural information processing systems, pp 1269–1277
5.
go back to reference Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep convolutional activation feature for generic visual recognition. In: ICML. pp 647–655 Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep convolutional activation feature for generic visual recognition. In: ICML. pp 647–655
7.
go back to reference Fernando B, Habrard A, Sebban M, Tuytelaars T (2013) Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE international conference on computer vision. Sydney, Australia, pp 2960–2967. http://www.iccv2013.org/ Fernando B, Habrard A, Sebban M, Tuytelaars T (2013) Unsupervised visual domain adaptation using subspace alignment. In: Proceedings of the IEEE international conference on computer vision. Sydney, Australia, pp 2960–2967. http://​www.​iccv2013.​org/​
9.
go back to reference Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lempitsky V (2016) Domain-adversarial training of neural networks. J Mach Learn Res 17(1):2096-30MathSciNetMATH Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lempitsky V (2016) Domain-adversarial training of neural networks. J Mach Learn Res 17(1):2096-30MathSciNetMATH
10.
go back to reference Gong B, Grauman K, Sha F (2013) Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation. In: ICML. pp 222–230 Gong B, Grauman K, Sha F (2013) Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation. In: ICML. pp 222–230
11.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y: Generative adversarial nets. In: Advances in neural information processing systems. pp 2672–2680 (2014) Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y: Generative adversarial nets. In: Advances in neural information processing systems. pp 2672–2680 (2014)
12.
go back to reference Han S, Mao H, Dally WJ (2015) Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 Han S, Mao H, Dally WJ (2015) Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:​1510.​00149
13.
go back to reference Han S, Pool J, Tran J, Dally W (2015) Learning both weights and connections for efficient neural network. In: Advances in neural information processing systems. pp 1135–1143 Han S, Pool J, Tran J, Dally W (2015) Learning both weights and connections for efficient neural network. In: Advances in neural information processing systems. pp 1135–1143
14.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, USA, pp 770–778. http://cvpr2016.thecvf.com/ He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, USA, pp 770–778. http://​cvpr2016.​thecvf.​com/​
15.
16.
go back to reference Hoffman J, Tzeng E, Park T, Zhu JY, Isola P, Saenko K, Efros AA, Darrell T (2018) Cycada: cycle-consistent adversarial domain adaptation. In: ICML Hoffman J, Tzeng E, Park T, Zhu JY, Isola P, Saenko K, Efros AA, Darrell T (2018) Cycada: cycle-consistent adversarial domain adaptation. In: ICML
17.
go back to reference Hou CA, Tsai YHH, Yeh YR, Wang YCF (2016) Unsupervised domain adaptation with label and structural consistency. IEEE Trans Image Process 25(12):5552–5562MathSciNetCrossRef Hou CA, Tsai YHH, Yeh YR, Wang YCF (2016) Unsupervised domain adaptation with label and structural consistency. IEEE Trans Image Process 25(12):5552–5562MathSciNetCrossRef
18.
go back to reference Hu Y, Sun S, Li J, Wang X, Gu Q (2018) A novel channel pruning method for deep neural network compression. arXiv preprint arXiv:1805.11394 Hu Y, Sun S, Li J, Wang X, Gu Q (2018) A novel channel pruning method for deep neural network compression. arXiv preprint arXiv:​1805.​11394
19.
go back to reference Huang J, Gretton A, Borgwardt K, Schölkopf B, Smola AJ (2007) Correcting sample selection bias by unlabeled data. In: Advances in neural information processing systems. pp 601–608 Huang J, Gretton A, Borgwardt K, Schölkopf B, Smola AJ (2007) Correcting sample selection bias by unlabeled data. In: Advances in neural information processing systems. pp 601–608
20.
go back to reference Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML
21.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp 1097–1105
22.
go back to reference Lin J, Rao Y, Lu J, Zhou J (2017) Runtime neural pruning. In: Advances in neural information processing systems. pp 2181–2191 Lin J, Rao Y, Lu J, Zhou J (2017) Runtime neural pruning. In: Advances in neural information processing systems. pp 2181–2191
23.
go back to reference Long M, Cao Y, Wang J, Jordan MI (2015) Learning transferable features with deep adaptation networks. In: ICML Long M, Cao Y, Wang J, Jordan MI (2015) Learning transferable features with deep adaptation networks. In: ICML
24.
go back to reference Long M, Wang J, Ding G, Sun J, Yu PS (2013) Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE international conference on computer vision. Sydney, Australia, pp 2200–2207. http://www.iccv2013.org/ Long M, Wang J, Ding G, Sun J, Yu PS (2013) Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE international conference on computer vision. Sydney, Australia, pp 2200–2207. http://​www.​iccv2013.​org/​
25.
go back to reference Long M, Zhu H, Wang J, Jordan MI (2017) Deep transfer learning with joint adaptation networks. In: ICML Long M, Zhu H, Wang J, Jordan MI (2017) Deep transfer learning with joint adaptation networks. In: ICML
26.
go back to reference Luo JH, Wu J (2018) Autopruner: An end-to-end trainable filter pruning method for efficient deep model inference. arXiv preprint arXiv:1805.08941 Luo JH, Wu J (2018) Autopruner: An end-to-end trainable filter pruning method for efficient deep model inference. arXiv preprint arXiv:​1805.​08941
27.
28.
go back to reference Molchanov P, Tyree S, Karras T, Aila T, Kautz J (2017) Pruning convolutional neural networks for resource efficient inference. In: ICLR Molchanov P, Tyree S, Karras T, Aila T, Kautz J (2017) Pruning convolutional neural networks for resource efficient inference. In: ICLR
29.
go back to reference Motiian S, Jones Q, Iranmanesh S, Doretto G (2017) Few-shot adversarial domain adaptation. In: Advances in neural information processing systems. pp 6670–6680 Motiian S, Jones Q, Iranmanesh S, Doretto G (2017) Few-shot adversarial domain adaptation. In: Advances in neural information processing systems. pp 6670–6680
30.
go back to reference Pan SJ, Kwok JT, Yang Q (2008) Transfer learning via dimensionality reduction. AAAI 8:677–682 Pan SJ, Kwok JT, Yang Q (2008) Transfer learning via dimensionality reduction. AAAI 8:677–682
31.
go back to reference Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210CrossRef Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210CrossRef
32.
go back to reference Pan SJ, Yang Q et al (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359CrossRef Pan SJ, Yang Q et al (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359CrossRef
33.
go back to reference Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch
34.
go back to reference Patel VM, Gopalan R, Li R, Chellappa R (2015) Visual domain adaptation: a survey of recent advances. IEEE Signal Process Mag 32(3):53–69CrossRef Patel VM, Gopalan R, Li R, Chellappa R (2015) Visual domain adaptation: a survey of recent advances. IEEE Signal Process Mag 32(3):53–69CrossRef
36.
go back to reference Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) Xnor-net: imagenet classification using binary convolutional neural networks. In: ECCV. Springer, pp 525–542 Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) Xnor-net: imagenet classification using binary convolutional neural networks. In: ECCV. Springer, pp 525–542
38.
go back to reference Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR
39.
go back to reference Sun B, Feng J, Saenko K (2016) Return of frustratingly easy domain adaptation. AAAI 6:8 Sun B, Feng J, Saenko K (2016) Return of frustratingly easy domain adaptation. AAAI 6:8
40.
go back to reference Sun B, Saenko K (2015) Subspace distribution alignment for unsupervised domain adaptation. In: BMVC. pp 24–1 Sun B, Saenko K (2015) Subspace distribution alignment for unsupervised domain adaptation. In: BMVC. pp 24–1
41.
go back to reference Sun B, Saenko K (2016) Deep coral: Correlation alignment for deep domain adaptation. In: European conference on computer vision. Springer, Amsterdam, The Netherlands, pp 443–450. http://www.eccv2016.org/ Sun B, Saenko K (2016) Deep coral: Correlation alignment for deep domain adaptation. In: European conference on computer vision. Springer, Amsterdam, The Netherlands, pp 443–450. http://​www.​eccv2016.​org/​
42.
go back to reference Tahmoresnezhad J, Hashemi S (2017) Visual domain adaptation via transfer feature learning. Knowl Inf Syst 50(2):585–605CrossRef Tahmoresnezhad J, Hashemi S (2017) Visual domain adaptation via transfer feature learning. Knowl Inf Syst 50(2):585–605CrossRef
43.
go back to reference Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial discriminative domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu, Hawaii, USA, pp 7167–7176. http://cvpr2017.thecvf.com/ Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial discriminative domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu, Hawaii, USA, pp 7167–7176. http://​cvpr2017.​thecvf.​com/​
44.
go back to reference Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T (2014) Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:1412.3474 Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T (2014) Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:​1412.​3474
45.
go back to reference Wang J, Chen Y, Hao S, Feng W, Shen Z (2017) Balanced distribution adaptation for transfer learning. In: Data mining (ICDM), 2017 IEEE International Conference on IEEE. New Orleans, USA, pp 1129–1134. http://icdm2017.bigke.org/ Wang J, Chen Y, Hao S, Feng W, Shen Z (2017) Balanced distribution adaptation for transfer learning. In: Data mining (ICDM), 2017 IEEE International Conference on IEEE. New Orleans, USA, pp 1129–1134. http://​icdm2017.​bigke.​org/​
46.
go back to reference Wang J, Feng W, Chen Y, Yu H, Huang M, Yu PS (2018) Visual domain adaptation with manifold embedded distribution alignment. In: 2018 ACM Multimedia Conference on Multimedia Conference. Seoul, Korea, pp 402–410. https://acmmm.org/2018/ Wang J, Feng W, Chen Y, Yu H, Huang M, Yu PS (2018) Visual domain adaptation with manifold embedded distribution alignment. In: 2018 ACM Multimedia Conference on Multimedia Conference. Seoul, Korea, pp 402–410. https://​acmmm.​org/​2018/​
48.
go back to reference Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing systems. pp 3320–3328 Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing systems. pp 3320–3328
49.
go back to reference Zhou A, Yao A, Guo Y, Xu L, Chen Y (2017) Incremental network quantization: Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044 Zhou A, Yao A, Guo Y, Xu L, Chen Y (2017) Incremental network quantization: Towards lossless cnns with low-precision weights. arXiv preprint arXiv:​1702.​03044
50.
go back to reference Zhuang F, Cheng X, Luo P, Pan SJ, He Q (2015) Supervised representation learning: transfer learning with deep autoencoders. In: IJCAI. pp 4119–4125 Zhuang F, Cheng X, Luo P, Pan SJ, He Q (2015) Supervised representation learning: transfer learning with deep autoencoders. In: IJCAI. pp 4119–4125
Metadata
Title
Transfer channel pruning for compressing deep domain adaptation models
Authors
Chaohui Yu
Jindong Wang
Yiqiang Chen
Xin Qin
Publication date
11-09-2019
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 11/2019
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-019-01004-6

Other articles of this Issue 11/2019

International Journal of Machine Learning and Cybernetics 11/2019 Go to the issue