Skip to main content
Top

2025 | OriginalPaper | Chapter

Transfer Learning Across Heterogeneous Structures Through Adversarial Training

Authors : Mohammad Hesam Soleimani-Babakamali, Onur Avci, Serkan Kiranyaz, Ertugrul Taciroglu

Published in: Data Science in Engineering Vol. 10

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Transfer learning (TL) methods have become increasingly crucial for the challenges in gathering accurately labeled data from various structures in structural health monitoring (SHM) tasks, such as structural damage detection (SDD). The structures must meet specific similitude criteria for the proposed TL technique’s effectiveness in current one-to-one domain approaches. To overcome this challenge, the authors have developed a novel TL method that utilizes raw vibrational features and raw-feature-to-raw-feature domain adaptation (DA) through spectral mapping. This approach offers a generalizable TL strategy that works across vastly different structures. The authors used generative adversarial network (GAN) architecture for the “learning,” as it can accommodate high-dimensional inputs in a zero-shot setting. The proposed TL approach was successfully evaluated over three structural health monitoring (SHM) benchmarks. Area under the curve (AUC) of the receiver operating characteristics (ROC) curve resulted in a threshold-bias-free estimation of SDD models retaining as much as 99% of the source model’s AUC through its application across different systems with diverse damage-representative data cases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
7.
go back to reference Abdeljaber, O., Hussein M., Avci, O.: In-service video-vibration monitoring for identification of walking patterns in an office floor. 25th International Congress on Sound Vibration. 2018, ICSV 2018 Hiroshima Call (2018) Abdeljaber, O., Hussein M., Avci, O.: In-service video-vibration monitoring for identification of walking patterns in an office floor. 25th International Congress on Sound Vibration. 2018, ICSV 2018 Hiroshima Call (2018)
8.
go back to reference Bocian, M., Nikitas, N., Kalybek, M., Kużawa, M., Hawryszków, P., Bień, J., Onysyk, J., Biliszczuk, J.: Dynamic performance verification of the Rędziński Bridge using portable camera-based vibration monitoring systems. Arch. Civ. Mech. Eng. (2023). https://doi.org/10.1007/s43452-022-00582-7 Bocian, M., Nikitas, N., Kalybek, M., Kużawa, M., Hawryszków, P., Bień, J., Onysyk, J., Biliszczuk, J.: Dynamic performance verification of the Rędziński Bridge using portable camera-based vibration monitoring systems. Arch. Civ. Mech. Eng. (2023). https://​doi.​org/​10.​1007/​s43452-022-00582-7
17.
go back to reference Chaabane, M., Ben Hamida, A., Mansouri, M., Nounou, H.N., Avci, O.: Damage detection using enhanced multivariate statistical process control technique. In: 17th International Conference Sciences and Techniques of Automatic Control & Computer Engineering. STA 2016 – Process (2017). https://doi.org/10.1109/STA.2016.7952052CrossRef Chaabane, M., Ben Hamida, A., Mansouri, M., Nounou, H.N., Avci, O.: Damage detection using enhanced multivariate statistical process control technique. In: 17th International Conference Sciences and Techniques of Automatic Control & Computer Engineering. STA 2016 – Process (2017). https://​doi.​org/​10.​1109/​STA.​2016.​7952052CrossRef
20.
go back to reference Perez-Ramirez, C.A., Amezquita-Sanchez, J.P., Adeli, H., Valtierra-Rodriguez, M., de Romero-Troncoso, R.J., Dominguez-Gonzalez, A., Osornio-Rios, R.A.: Time-frequency techniques for modal parameters identification of civil structures from acquired dynamic signals. J. Vibroeng. (2016). https://doi.org/10.21595/jve.2016.17220 Perez-Ramirez, C.A., Amezquita-Sanchez, J.P., Adeli, H., Valtierra-Rodriguez, M., de Romero-Troncoso, R.J., Dominguez-Gonzalez, A., Osornio-Rios, R.A.: Time-frequency techniques for modal parameters identification of civil structures from acquired dynamic signals. J. Vibroeng. (2016). https://​doi.​org/​10.​21595/​jve.​2016.​17220
31.
33.
go back to reference Soleimani-Babakamali, M.H., Soleimani-Babakamali, R., Sarlo, R.: A general framework for supervised structural health monitoring and sensor output validation mitigating data imbalance with generative adversarial networks-generated high-dimensional features. Struct. Heal. Monit. (2022). https://doi.org/10.1177/14759217211025488 Soleimani-Babakamali, M.H., Soleimani-Babakamali, R., Sarlo, R.: A general framework for supervised structural health monitoring and sensor output validation mitigating data imbalance with generative adversarial networks-generated high-dimensional features. Struct. Heal. Monit. (2022). https://​doi.​org/​10.​1177/​1475921721102548​8
34.
go back to reference Soleimani-Babakamali, M.H., Soleimani-Babakamali, R., Nasrollahzadeh, K., Avci, O., Kiranyaz, S., Taciroglu, E.: Zero-shot transfer learning for structural health monitoring using generative adversarial networks and spectral mapping. Mech. Syst. Signal Process. (2023). https://doi.org/10.1016/j.ymssp.2023.110404 Soleimani-Babakamali, M.H., Soleimani-Babakamali, R., Nasrollahzadeh, K., Avci, O., Kiranyaz, S., Taciroglu, E.: Zero-shot transfer learning for structural health monitoring using generative adversarial networks and spectral mapping. Mech. Syst. Signal Process. (2023). https://​doi.​org/​10.​1016/​j.​ymssp.​2023.​110404
36.
44.
Metadata
Title
Transfer Learning Across Heterogeneous Structures Through Adversarial Training
Authors
Mohammad Hesam Soleimani-Babakamali
Onur Avci
Serkan Kiranyaz
Ertugrul Taciroglu
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-68142-4_7