Skip to main content
Top
Published in:

28-03-2022

“Transfer Learning” for Bridging the Gap Between Data Sciences and the Deep Learning

Author: Ayesha Sohail

Published in: Annals of Data Science | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Over the past two decades, the community of data science, computer vision and programming has evolved rapidly and new programming techniques have replaced the computationally expensive techniques. This is achieved with the aid of smart programming languages, smart computers and intelligent minds. The neural networks are replaced by the deep neural networks which are comprised of several layers and neurons, the direct large data “classification” has been replaced by the transfer learning tools, which are computationally more efficient and accurate as long as the user has the clear vision of synchronizing the new problem with the pre-trained model. Artificial intelligence tools are much improved since the discovery of transfer learning tools and the programming time of several days or weeks for the deep networks has now reduced to few minutes or hours. This article presents detailed insight of transfer learning frame work with the aid of some useful programming tools.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Das AK, Sengupta S, Bhattacharyya S (2018) A group incremental feature selection for classification using rough set theory based genetic algorithm. Appl Soft Comput 65:400CrossRef Das AK, Sengupta S, Bhattacharyya S (2018) A group incremental feature selection for classification using rough set theory based genetic algorithm. Appl Soft Comput 65:400CrossRef
2.
go back to reference Lowrey LG (1950) XII. Columbia University Press, MENTAL DEFICIENCY Lowrey LG (1950) XII. Columbia University Press, MENTAL DEFICIENCY
3.
go back to reference Jaynes J (1950) Learning a second response to a cue as a function of the magnitude of the first. J Compar Physiol Psychol 43:398CrossRef Jaynes J (1950) Learning a second response to a cue as a function of the magnitude of the first. J Compar Physiol Psychol 43:398CrossRef
4.
go back to reference Gramaje A, Thabtah F, Abdelhamid N, Ray SK (2019) Patient discharge classification using machine learning techniques. Ann Data Sci 1:1 Gramaje A, Thabtah F, Abdelhamid N, Ray SK (2019) Patient discharge classification using machine learning techniques. Ann Data Sci 1:1
5.
go back to reference Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining. McGraw-Hill, New York Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining. McGraw-Hill, New York
6.
go back to reference Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining theory and applications. Springer, BerlinCrossRef Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining theory and applications. Springer, BerlinCrossRef
7.
go back to reference Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4:149CrossRef Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4:149CrossRef
8.
go back to reference Shi Y (2021) Advances in big data analytics: theory algorithms and practices. Springer Nature, Berlin Shi Y (2021) Advances in big data analytics: theory algorithms and practices. Springer Nature, Berlin
9.
go back to reference Iftikhar M, Sohail A, Ahmad N (2019) Deterministic and stochastic analysis of dengue spread model. Biomed Eng 31:1950008 Iftikhar M, Sohail A, Ahmad N (2019) Deterministic and stochastic analysis of dengue spread model. Biomed Eng 31:1950008
10.
go back to reference Sohail A, Li ZW, Iftikhar M, Mohamed M, Beg OA (2017) Stochastic analysis of a deterministic and seasonally-forced SEI model for improved disease spread simulation. J Mech Med Biol 17:1750067CrossRef Sohail A, Li ZW, Iftikhar M, Mohamed M, Beg OA (2017) Stochastic analysis of a deterministic and seasonally-forced SEI model for improved disease spread simulation. J Mech Med Biol 17:1750067CrossRef
11.
go back to reference Sohail A, Idrees M, Sajjad M, Iftikhar S, Tunc S (2020) Computational framework to explore impact of environmental stress on epidemics. Biomed Eng 32:2050047 Sohail A, Idrees M, Sajjad M, Iftikhar S, Tunc S (2020) Computational framework to explore impact of environmental stress on epidemics. Biomed Eng 32:2050047
12.
13.
go back to reference Sohail A, Arif F (2020) Supervised and unsupervised algorithms for bioinformatics and data science. Prog Biophys Mol Biol 151:14CrossRefPubMed Sohail A, Arif F (2020) Supervised and unsupervised algorithms for bioinformatics and data science. Prog Biophys Mol Biol 151:14CrossRefPubMed
14.
go back to reference Sherin L, Sohail A, Shujaat S (2019) Time-dependent AI-modeling of the anticancer efficacy of synthesized gallic acid analogues. Comput Biol Chem 79:137CrossRefPubMed Sherin L, Sohail A, Shujaat S (2019) Time-dependent AI-modeling of the anticancer efficacy of synthesized gallic acid analogues. Comput Biol Chem 79:137CrossRefPubMed
15.
go back to reference Nutini A, Sohail A, Farwa S (2021) Biomedical engineering of sclerostin action in the bone remodeling. Biomed Eng 31:2150016 Nutini A, Sohail A, Farwa S (2021) Biomedical engineering of sclerostin action in the bone remodeling. Biomed Eng 31:2150016
16.
17.
go back to reference Drikvandi R, Lawal O (2020) Sparse principal component analysis for natural language processing. Ann Data Sci 1:1 Drikvandi R, Lawal O (2020) Sparse principal component analysis for natural language processing. Ann Data Sci 1:1
18.
go back to reference Ghritlahre HK, Chandrakar P, Ahmad A (2021) A comprehensive review on performance prediction of solar air heaters using artificial neural network. Ann Data Sci 8:405CrossRef Ghritlahre HK, Chandrakar P, Ahmad A (2021) A comprehensive review on performance prediction of solar air heaters using artificial neural network. Ann Data Sci 8:405CrossRef
19.
go back to reference Yu Z, Ellahi R, Nutini A, Sohail A, Sait SM (2021) Modeling and simulations of CoViD-19 molecular mechanism induced by cytokines storm during SARS-CoV2 infection. J Mol Liq 327:114863CrossRefPubMed Yu Z, Ellahi R, Nutini A, Sohail A, Sait SM (2021) Modeling and simulations of CoViD-19 molecular mechanism induced by cytokines storm during SARS-CoV2 infection. J Mol Liq 327:114863CrossRefPubMed
20.
go back to reference Yu Z, Arif R, Fahmy MA, Sohail A (2021) Self organizing maps for the parametric analysis of COVID-19 SEIRS delayed model. Chaos, Solitons Fract 150:111202MathSciNetCrossRef Yu Z, Arif R, Fahmy MA, Sohail A (2021) Self organizing maps for the parametric analysis of COVID-19 SEIRS delayed model. Chaos, Solitons Fract 150:111202MathSciNetCrossRef
21.
go back to reference Sohail A (2019) Inference of biomedical data sets using Bayesian machine learning. Biomed Eng: Appl Basis Commun 31:1950030 Sohail A (2019) Inference of biomedical data sets using Bayesian machine learning. Biomed Eng: Appl Basis Commun 31:1950030
22.
go back to reference Sohail A (2021) Genetic algorithms in the fields of artificial intelligence and data sciences. Ann Data Sci 1:1 Sohail A (2021) Genetic algorithms in the fields of artificial intelligence and data sciences. Ann Data Sci 1:1
23.
go back to reference Al Ghamdi M, Li M, Abdel-Mottaleb M, Abou Shousha M (2019) Semi-supervised transfer learning for convolutional neural networks for glaucoma detection. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE p. 3812–3816 Al Ghamdi M, Li M, Abdel-Mottaleb M, Abou Shousha M (2019) Semi-supervised transfer learning for convolutional neural networks for glaucoma detection. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE p. 3812–3816
24.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inform Process Syst 25:1097 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inform Process Syst 25:1097
25.
go back to reference Sengan S, Arokia Jesu Prabhu L, Ramachandran V, Priya V, Ravi L, Subramaniyaswamy V(2020) Images super-resolution by optimal deep AlexNet architecture for medical application: a novel DOCALN. Journal of Intelligent & Fuzzy Systems1:1 Sengan S, Arokia Jesu Prabhu L, Ramachandran V, Priya V, Ravi L, Subramaniyaswamy V(2020) Images super-resolution by optimal deep AlexNet architecture for medical application: a novel DOCALN. Journal of Intelligent & Fuzzy Systems1:1
26.
go back to reference Kuppala K, Banda S, Barige TR (2020) An overview of deep learning methods for image registration with focus on feature-based approaches. Int J Image Data Fus 11:113CrossRef Kuppala K, Banda S, Barige TR (2020) An overview of deep learning methods for image registration with focus on feature-based approaches. Int J Image Data Fus 11:113CrossRef
27.
go back to reference Prastika K et al (2020) Application of individual activity recognition in the room using CNN Alexnet method. In: IOP Conference Series: Materials Science and Engineering. vol. 1007. IOP Publishing; p. 012162 Prastika K et al (2020) Application of individual activity recognition in the room using CNN Alexnet method. In: IOP Conference Series: Materials Science and Engineering. vol. 1007. IOP Publishing; p. 012162
28.
go back to reference Lu T, Yu F, Xue C, Han B (2021) Identification, classification, and quantification of three physical mechanisms in oil-in-water emulsions using AlexNet with transfer learning. J Food Eng 288:110220CrossRef Lu T, Yu F, Xue C, Han B (2021) Identification, classification, and quantification of three physical mechanisms in oil-in-water emulsions using AlexNet with transfer learning. J Food Eng 288:110220CrossRef
29.
go back to reference Beeharry Y, Bassoo V (2020) Performance of ANN and AlexNet for weed detection using UAV-based images. In: 2020 3rd International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM). IEEE p. 163–167 Beeharry Y, Bassoo V (2020) Performance of ANN and AlexNet for weed detection using UAV-based images. In: 2020 3rd International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM). IEEE p. 163–167
30.
go back to reference Zhu L, Li Z, Li C, Wu J, Yue J (2018) High performance vegetable classification from images based on alexnet deep learning model. Int J Agri Biol Eng 11:217 Zhu L, Li Z, Li C, Wu J, Yue J (2018) High performance vegetable classification from images based on alexnet deep learning model. Int J Agri Biol Eng 11:217
31.
go back to reference Ayuba P, Luhutyit PD, Sa’adatu A (2020) Improved determination of the optimum maturity of maize based on Alexnet. Sci World J 15(3):133–138 Ayuba P, Luhutyit PD, Sa’adatu A (2020) Improved determination of the optimum maturity of maize based on Alexnet. Sci World J 15(3):133–138
32.
go back to reference Lu T, Han B, Yu F (2021) Detection and classification of marine mammal sounds using AlexNet with transfer learning. Ecol Inform 62:101277CrossRef Lu T, Han B, Yu F (2021) Detection and classification of marine mammal sounds using AlexNet with transfer learning. Ecol Inform 62:101277CrossRef
33.
go back to reference Almodfer R, Xiong S, Mudhsh M, Duan P (2017) Enhancing AlexNet for arabic handwritten words recognition using incremental dropout. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE p. 663–669 Almodfer R, Xiong S, Mudhsh M, Duan P (2017) Enhancing AlexNet for arabic handwritten words recognition using incremental dropout. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE p. 663–669
34.
go back to reference Thalagala S, Walgampaya C (2021) Application of AlexNet convolutional neural network architecture-based transfer learning for automated recognition of casting surface defects. In: 2021 International Research Conference on Smart Computing and Systems Engineering (SCSE). vol. 4. IEEE p. 129–136 Thalagala S, Walgampaya C (2021) Application of AlexNet convolutional neural network architecture-based transfer learning for automated recognition of casting surface defects. In: 2021 International Research Conference on Smart Computing and Systems Engineering (SCSE). vol. 4. IEEE p. 129–136
35.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition p. 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition p. 1–9
36.
go back to reference Anand R, Shanthi T, Nithish M, Lakshman S (2020) Face recognition and classification using GoogleNET architecture In soft computing for problem solving. Springer, Berlin, pp 261–269CrossRef Anand R, Shanthi T, Nithish M, Lakshman S (2020) Face recognition and classification using GoogleNET architecture In soft computing for problem solving. Springer, Berlin, pp 261–269CrossRef
37.
go back to reference Al-Qizwini M, Barjasteh I, Al-Qassab H, Radha H (2017) Deep learning algorithm for autonomous driving using GoogLeNet. In: 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE 89–96 Al-Qizwini M, Barjasteh I, Al-Qassab H, Radha H (2017) Deep learning algorithm for autonomous driving using GoogLeNet. In: 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE 89–96
38.
go back to reference Bi N, Chen J, Tan J (2019) The handwritten Chinese character recognition uses convolutional neural networks with the googlenet. Int J Pattern Recognit Artif Intell 33(11):1940016CrossRef Bi N, Chen J, Tan J (2019) The handwritten Chinese character recognition uses convolutional neural networks with the googlenet. Int J Pattern Recognit Artif Intell 33(11):1940016CrossRef
39.
go back to reference Ostankovich V, Afanasyev I (2018) Illegal buildings detection from satellite images using googlenet and cadastral map. In: 2018 International Conference on Intelligent Systems (IS). IEEE p. 616–623 Ostankovich V, Afanasyev I (2018) Illegal buildings detection from satellite images using googlenet and cadastral map. In: 2018 International Conference on Intelligent Systems (IS). IEEE p. 616–623
40.
go back to reference Ak A, Topuz V, Midi I (2022) Motor imagery EEG signal classification using image processing technique over GoogLeNet deep learning algorithm for controlling the robot manipulator. Biomed Signal Process Control 72:103295CrossRef Ak A, Topuz V, Midi I (2022) Motor imagery EEG signal classification using image processing technique over GoogLeNet deep learning algorithm for controlling the robot manipulator. Biomed Signal Process Control 72:103295CrossRef
41.
go back to reference Javadi M, Azar SM, Azami S, Ghidary SS, Sadeghnejad S, Baltes J (2017) Humanoid robot detection using deep learning: a speed-accuracy tradeoff In Robot World Cup. Springer, Berlin, pp 338–349 Javadi M, Azar SM, Azami S, Ghidary SS, Sadeghnejad S, Baltes J (2017) Humanoid robot detection using deep learning: a speed-accuracy tradeoff In Robot World Cup. Springer, Berlin, pp 338–349
43.
go back to reference Tang P, Wang H, Kwong S (2017) G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition. Neurocomputing 225:188–197CrossRef Tang P, Wang H, Kwong S (2017) G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition. Neurocomputing 225:188–197CrossRef
44.
go back to reference Kim YD, Park E, Yoo S, Choi T, Yang L, Shin D (2015) Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv preprint arXiv:151106530 Kim YD, Park E, Yoo S, Choi T, Yang L, Shin D (2015) Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv preprint arXiv:​151106530
45.
go back to reference Schlumberger M, Brose M, Elisei R, Leboulleux S, Luster M, Pitoia F et al (2014) Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol 2(5):356–358CrossRefPubMed Schlumberger M, Brose M, Elisei R, Leboulleux S, Luster M, Pitoia F et al (2014) Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol 2(5):356–358CrossRefPubMed
46.
go back to reference Ohiduzzaman M, Khatun R, Reza S, Khan K, Akter S, Uddin M et al (2019) Study of exposure rates from various nuclear medicine scan at INMAS. Dhaka. IJARIIE. 5(3):208–218 Ohiduzzaman M, Khatun R, Reza S, Khan K, Akter S, Uddin M et al (2019) Study of exposure rates from various nuclear medicine scan at INMAS. Dhaka. IJARIIE. 5(3):208–218
47.
go back to reference Giger ML (2018) Machine learning in medical imaging. J Am College Radiol 15(3):512–520CrossRef Giger ML (2018) Machine learning in medical imaging. J Am College Radiol 15(3):512–520CrossRef
48.
go back to reference Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Duan Y (2020) Deep learning models for classification of red blood cells in microscopy images to aid in sickle cell anemia diagnosis. Electronics 9(3):427CrossRef Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Duan Y (2020) Deep learning models for classification of red blood cells in microscopy images to aid in sickle cell anemia diagnosis. Electronics 9(3):427CrossRef
49.
go back to reference Sohail A, Bég O, Li Z, Celik S (2018) Physics of fractional imaging in biomedicine. Prog Biophys Mole Biol 140:13–20CrossRef Sohail A, Bég O, Li Z, Celik S (2018) Physics of fractional imaging in biomedicine. Prog Biophys Mole Biol 140:13–20CrossRef
50.
go back to reference Wan Z, Yang R, Huang M, Zeng N, Liu X (2021) A review on transfer learning in EEG signal analysis. Neurocomputing 421:1–14CrossRef Wan Z, Yang R, Huang M, Zeng N, Liu X (2021) A review on transfer learning in EEG signal analysis. Neurocomputing 421:1–14CrossRef
51.
go back to reference Krishna R, Menzies T, Fu W (2016) Too much automation? The bellwether effect and its implications for transfer learning. In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering p. 122–131 Krishna R, Menzies T, Fu W (2016) Too much automation? The bellwether effect and its implications for transfer learning. In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering p. 122–131
Metadata
Title
“Transfer Learning” for Bridging the Gap Between Data Sciences and the Deep Learning
Author
Ayesha Sohail
Publication date
28-03-2022
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science / Issue 1/2024
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-022-00384-x

Premium Partner