Skip to main content
Top
Published in:

19-07-2022 | Original Article

Transfer physics informed neural network: a new framework for distributed physics informed neural networks via parameter sharing

Authors: Sreehari Manikkan, Balaji Srinivasan

Published in: Engineering with Computers | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We introduce Transfer Physics Informed Neural Network (TPINN), a neural network-based approach for solving forward and inverse problems in nonlinear partial differential equations (PDEs). In TPINN, one or more layers of physics informed neural network (PINN) corresponding to each non-overlapping subdomains are changed using a unique set of parameters for each PINN. The remaining layers of individual PINNs are the same through parameter sharing. The subdomains can be those obtained by partitioning the global computational domain or subdomains part of the problem definition, which adds to the total computational domain. Solutions from different subdomains are connected while training using problem-specific interface conditions incorporated into the loss function. The proposed method handles forward and inverse problems where PDE formulation changes or when there is a discontinuity in PDE parameters across different subdomains efficiently. Parameter sharing reduces parameter space dimension, memory requirements, computational burden and increases accuracy. The efficacy of the proposed approach is demonstrated by solving various forward and inverse problems, including classical benchmark problems and problems involving parameter heterogeneity from the heat transfer domain. In inverse parameter estimation problems, statistical analysis of estimated parameters is performed by solving the problem independently six times. Noise analysis by varying the noise level in the input data is performed for all inverse problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105
42.
go back to reference Marchi CH, Suero R, Araki LK (2009) The lid-driven square cavity flow: numerical solution with a 1024 x 1024 grid. J Braz Soc Mech Sci Eng 31(3):186–198CrossRef Marchi CH, Suero R, Araki LK (2009) The lid-driven square cavity flow: numerical solution with a 1024 x 1024 grid. J Braz Soc Mech Sci Eng 31(3):186–198CrossRef
48.
go back to reference Kraft D (1988) A software package for sequential quadratic programming. Technical Report DFVLR-FB 88-28 Kraft D (1988) A software package for sequential quadratic programming. Technical Report DFVLR-FB 88-28
49.
go back to reference Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, et al. (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, et al. (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:​1603.​04467
55.
go back to reference Dong S, Li Z (2020) Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations. arXiv:2012.02895 Dong S, Li Z (2020) Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations. arXiv:​2012.​02895
57.
go back to reference Yan CA, Vescovini R, Dozio L (2022) A framework based on physics-informed neural networks and extreme learning for the analysis of composite structures. Comput struct 265:106761. 10.1016/j.compstruc.2022.106761 Yan CA, Vescovini R, Dozio L (2022) A framework based on physics-informed neural networks and extreme learning for the analysis of composite structures. Comput struct 265:106761. 10.1016/j.compstruc.2022.106761
59.
go back to reference Wang S, Teng Y, Perdikaris P (2020) Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv:2001.04536 Wang S, Teng Y, Perdikaris P (2020) Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv:​2001.​04536
61.
go back to reference Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. Aistats 9:249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. Aistats 9:249–256
62.
go back to reference Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading
Metadata
Title
Transfer physics informed neural network: a new framework for distributed physics informed neural networks via parameter sharing
Authors
Sreehari Manikkan
Balaji Srinivasan
Publication date
19-07-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01703-9