Skip to main content
Top
Published in:

24-01-2024

Transforming Conversations with AI—A Comprehensive Study of ChatGPT

Authors: Gaurang Bansal, Vinay Chamola, Amir Hussain, Mohsen Guizani, Dusit Niyato

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The field of cognitive computing, conversational AI has witnessed remarkable progress, largely driven by the development of the Generative Pre-trained Transformer (GPT) series, notably ChatGPT. These transformer-based models have revolutionized natural language understanding by effectively capturing context and long-range dependencies. In light of this, this paper conducts a comprehensive exploration of ChatGPT, encompassing its architectural design, training methodology, real-world applications, and future potential within the conversational AI landscape. The paper studies the ChatGPT ability for advanced control and responsiveness, exhibiting a superior capacity for comprehending language and generating precise, informative responses. The comprehensive survey depicts ChatGPT excels in sustaining context and engaging in multi-turn dialogues, thereby fostering more interactive and meaningful conversations. Furthermore, its adaptability for integration into various systems and scalability has broadened its applicability across diverse domains, including customer service, education, content generation, healthcare, gaming, research, and exploration. Additionally, the paper presents alternative conversational AI models, such as Amazon Codewhisperer, Google Bard (LaMDA), Microsoft Bing AI, DeepMind Sparrow, and Character AI, providing a comparative analysis that underscores ChatGPT’s advantages in terms of inference capabilities and future promise. Recognizing the evolution and profound impact of ChatGPT holds paramount significance for researchers and developers at the forefront of AI innovation. In a rapidly evolving conversational AI landscape, ChatGPT emerges as a pivotal player, capable of reshaping the way we interact with AI systems across a wide array of applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Kulkarni P, Mahabaleshwarkar A, Kulkarni M, Sirsikar N, Gadgil K, Conversational AI: An overview of methodologies, applications & future scope. In: 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA). IEEE; 2019. p. 1–7. Kulkarni P, Mahabaleshwarkar A, Kulkarni M, Sirsikar N, Gadgil K, Conversational AI: An overview of methodologies, applications & future scope. In: 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA). IEEE; 2019. p. 1–7.
3.
go back to reference Fu T, Gao S, Zhao X, Wen J-R, Yan R. Learning towards conversational AI: A survey. AI Open. 2022;3:14–28. Fu T, Gao S, Zhao X, Wen J-R, Yan R. Learning towards conversational AI: A survey. AI Open. 2022;3:14–28.
4.
go back to reference Firat M. How chat GPT can transform autodidactic experiences and open education. Department of Distance Education: Open Education Faculty, Anadolu Unive; 2023.CrossRef Firat M. How chat GPT can transform autodidactic experiences and open education. Department of Distance Education: Open Education Faculty, Anadolu Unive; 2023.CrossRef
6.
go back to reference Ruane E, Birhane A, Ventresque A. Conversational AI: Social and ethical considerations. In: AICS. 2019. p. 104–15. Ruane E, Birhane A, Ventresque A. Conversational AI: Social and ethical considerations. In: AICS. 2019. p. 104–15.
7.
go back to reference Gao J, Galley M, Li L. Neural approaches to conversational AI. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018. p. 1371–4. Gao J, Galley M, Li L. Neural approaches to conversational AI. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018. p. 1371–4.
8.
go back to reference Richardson C, Heck L. Commonsense reasoning for conversational AI: A survey of the state of the art. arXiv:2302.07926 [Preprint]. 2023. Richardson C, Heck L. Commonsense reasoning for conversational AI: A survey of the state of the art. arXiv:​2302.​07926 [Preprint]. 2023.
9.
go back to reference Adewumi T, Liwicki F, Liwicki M. State-of-the-art in open-domain conversational AI: A survey. Information. 2022;13(6):298.CrossRef Adewumi T, Liwicki F, Liwicki M. State-of-the-art in open-domain conversational AI: A survey. Information. 2022;13(6):298.CrossRef
11.
go back to reference Yang Z, Gan Z, Wang J, Hu X, Lu Y, Liu Z, Wang L. An empirical study of GPT-3 for few-shot knowledge-based VQA. Proceedings of the AAAI Conference on Artificial Intelligence. 2022;36(3):3081–9.CrossRef Yang Z, Gan Z, Wang J, Hu X, Lu Y, Liu Z, Wang L. An empirical study of GPT-3 for few-shot knowledge-based VQA. Proceedings of the AAAI Conference on Artificial Intelligence. 2022;36(3):3081–9.CrossRef
14.
go back to reference Budzianowski P, Vulić I. Hello, it’s GPT-2-how can i help you? Towards the use of pretrained language models for task-oriented dialogue systems. arXiv:1907.05774 [Preprint]. 2019. Budzianowski P, Vulić I. Hello, it’s GPT-2-how can i help you? Towards the use of pretrained language models for task-oriented dialogue systems. arXiv:​1907.​05774 [Preprint]. 2019.
15.
go back to reference Bird JJ, Ekárt A, Faria DR. Chatbot interaction with artificial intelligence: human data augmentation with t5 and language transformer ensemble for text classification. J Ambient Intell Humaniz Comput. 2023;14(4):3129–44.CrossRef Bird JJ, Ekárt A, Faria DR. Chatbot interaction with artificial intelligence: human data augmentation with t5 and language transformer ensemble for text classification. J Ambient Intell Humaniz Comput. 2023;14(4):3129–44.CrossRef
16.
17.
go back to reference Lee J-S, Hsiang J. Patent claim generation by fine-tuning OpenAI GPT-2. World Patent Inf. 2020;62:101983.CrossRef Lee J-S, Hsiang J. Patent claim generation by fine-tuning OpenAI GPT-2. World Patent Inf. 2020;62:101983.CrossRef
18.
go back to reference Henderson M, Casanueva I, Mrkšić N, Su P-H, Wen T-H, Vulić I. Convert: Efficient and accurate conversational representations from transformers. arXiv:1911.03688 [Preprint]. 2019. Henderson M, Casanueva I, Mrkšić N, Su P-H, Wen T-H, Vulić I. Convert: Efficient and accurate conversational representations from transformers. arXiv:​1911.​03688 [Preprint]. 2019.
19.
go back to reference Weizenbaum J. Eliza–a computer program for the study of natural language communication between man and machine. Commun ACM. 1966;9(1):36–45.MathSciNetCrossRef Weizenbaum J. Eliza–a computer program for the study of natural language communication between man and machine. Commun ACM. 1966;9(1):36–45.MathSciNetCrossRef
20.
go back to reference Winograd T. Procedures as a representation for data in a computer program for understanding natural language. Commun ACM. 1970;13(5):326–31. Winograd T. Procedures as a representation for data in a computer program for understanding natural language. Commun ACM. 1970;13(5):326–31.
21.
go back to reference Colby KM, Hilf FD. Parry, the paranoid computer program. In: Proceedings of the National Computer Conference. ACM; 1972. p. 355–9. Colby KM, Hilf FD. Parry, the paranoid computer program. In: Proceedings of the National Computer Conference. ACM; 1972. p. 355–9.
22.
go back to reference Wallace RS. The anatomy of Alice. In: Proceedings of the First International Conference on Autonomous Agents. ACM; 1995. p. 8–14. Wallace RS. The anatomy of Alice. In: Proceedings of the First International Conference on Autonomous Agents. ACM; 1995. p. 8–14.
23.
go back to reference Carpenter R. Jabberwacky-a case study of intractable ambiguity. In: Proceedings of the Third International Conference on Autonomous Agents. ACM; 1999. p. 124–30. Carpenter R. Jabberwacky-a case study of intractable ambiguity. In: Proceedings of the Third International Conference on Autonomous Agents. ACM; 1999. p. 124–30.
24.
go back to reference Carpenter R. Evaluation of Cleverbot. In: Proceedings of the Sixth International Conference on Self-adaptive and Self-organizing Systems. ACM; 2012. p. 331–8. Carpenter R. Evaluation of Cleverbot. In: Proceedings of the Sixth International Conference on Self-adaptive and Self-organizing Systems. ACM; 2012. p. 331–8.
25.
go back to reference Ferrucci DA, Brown EW, Chu-Carroll J, Fan JW, Gondek D, Kalyanpur AA, Lally A, Murdock WW, Nyberg E, Prager JM et al. Building Watson: An overview of the DeepQA project. In: AI Magazine, vol 31, no 3. AAAI Press; 2010. p. 59–79. Ferrucci DA, Brown EW, Chu-Carroll J, Fan JW, Gondek D, Kalyanpur AA, Lally A, Murdock WW, Nyberg E, Prager JM et al. Building Watson: An overview of the DeepQA project. In: AI Magazine, vol 31, no 3. AAAI Press; 2010. p. 59–79.
26.
go back to reference Cheyer A, Hakkani-Tur D, Chen L, Gao Y, Deng L, He X, Heck L. Siri: an intelligent assistant for Iphone 4s. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 2012; p. 5661–4. Cheyer A, Hakkani-Tur D, Chen L, Gao Y, Deng L, He X, Heck L. Siri: an intelligent assistant for Iphone 4s. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 2012; p. 5661–4.
27.
go back to reference Ram A, Fischer A, Saha S, Choudhury R, Batra D, Foulds J, Hakkani-Tur D, Heck L, Hsu B, Khandelwal P et al. Alexa prize: socialbot grand challenge 3 finals. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing. 2018. p. 6294–8. Ram A, Fischer A, Saha S, Choudhury R, Batra D, Foulds J, Hakkani-Tur D, Heck L, Hsu B, Khandelwal P et al. Alexa prize: socialbot grand challenge 3 finals. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing. 2018. p. 6294–8.
28.
go back to reference Bahl L, Ramabhadran B, Elhadad M, Hakkani-T"ur D, Heck L, Paritosh P, Picheny M, Potamianos A, Roukos S. Conversational understanding as an AI-hard problem: A progress report on the Richard-SimON project. In: Proceedings of the 14th Annual Meeting of the Special Interest Group on Discourse and Dialogue. ACL; 2013. p. 1–10. Bahl L, Ramabhadran B, Elhadad M, Hakkani-T"ur D, Heck L, Paritosh P, Picheny M, Potamianos A, Roukos S. Conversational understanding as an AI-hard problem: A progress report on the Richard-SimON project. In: Proceedings of the 14th Annual Meeting of the Special Interest Group on Discourse and Dialogue. ACL; 2013. p. 1–10.
29.
go back to reference Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi J, Powell T, Ewalds T, Georgiev P, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature. 2018;575(7782):350–4.CrossRef Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi J, Powell T, Ewalds T, Georgiev P, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature. 2018;575(7782):350–4.CrossRef
31.
go back to reference Ahmed M, Khan HU, Munir EU. Conversational AI: an explication of few-shot learning problem in transformers-based chatbot systems. IEEE Trans Comput Soc Syst. 2023. Ahmed M, Khan HU, Munir EU. Conversational AI: an explication of few-shot learning problem in transformers-based chatbot systems. IEEE Trans Comput Soc Syst. 2023.
32.
go back to reference Haroon S, Hafsath C, Jereesh A. GPT based model with relative attention for de novo drug design. Comput Biol Chem. 2023. p. 107911 Haroon S, Hafsath C, Jereesh A. GPT based model with relative attention for de novo drug design. Comput Biol Chem. 2023. p. 107911
33.
go back to reference Yetiştiren B, Özsoy I, Ayerdem M, Tüzün E. Evaluating the code quality of AI-assisted code generation tools: An empirical study on Github Copilot, Amazon CodeWhisperer, and ChatGPT. arXiv:2304.10778 [Preprint]. 2023. Yetiştiren B, Özsoy I, Ayerdem M, Tüzün E. Evaluating the code quality of AI-assisted code generation tools: An empirical study on Github Copilot, Amazon CodeWhisperer, and ChatGPT. arXiv:​2304.​10778 [Preprint]. 2023.
34.
go back to reference Rahaman MS, Ahsan M, Anjum N, Rahman MM, Rahman MN. The AI race is on! Google’s Bard and OpenAI’s ChatGPT head to head: an opinion article. Md Nafizur, The AI Race is on: Mizanur and Rahman. 2023. Rahaman MS, Ahsan M, Anjum N, Rahman MM, Rahman MN. The AI race is on! Google’s Bard and OpenAI’s ChatGPT head to head: an opinion article. Md Nafizur, The AI Race is on: Mizanur and Rahman. 2023.
35.
go back to reference Crawford J, Cowling M, Ashton-Hay S, Kelder J-A, Middleton R, Wilson GS. Artificial intelligence and authorship editor policy: ChatGPT, Bard Bing AI, and beyond. J Univ Teach Learn Pract. 2023;20(5):1. Crawford J, Cowling M, Ashton-Hay S, Kelder J-A, Middleton R, Wilson GS. Artificial intelligence and authorship editor policy: ChatGPT, Bard Bing AI, and beyond. J Univ Teach Learn Pract. 2023;20(5):1.
36.
go back to reference Murugesan S, Cherukuri AK. The rise of generative artificial intelligence and its impact on education: The promises and perils. Computer. 2023;56(5):116–21.CrossRef Murugesan S, Cherukuri AK. The rise of generative artificial intelligence and its impact on education: The promises and perils. Computer. 2023;56(5):116–21.CrossRef
37.
go back to reference Haleem A, Javaid M, Singh RP. An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations. 2022;2(4):100089.CrossRef Haleem A, Javaid M, Singh RP. An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations. 2022;2(4):100089.CrossRef
38.
go back to reference Nie W, Bao Y, Zhao Y, Liu A. Long dialogue emotion detection based on commonsense knowledge graph guidance. IEEE Trans Multimedia. 2023. Nie W, Bao Y, Zhao Y, Liu A. Long dialogue emotion detection based on commonsense knowledge graph guidance. IEEE Trans Multimedia. 2023.
39.
go back to reference Zhou X, Zhang L. SA-FPN: An effective feature pyramid network for crowded human detection. Appl Intell. 2022;52(11):12556–68. Zhou X, Zhang L. SA-FPN: An effective feature pyramid network for crowded human detection. Appl Intell. 2022;52(11):12556–68.
40.
go back to reference Chen B, Hu J, Zhao Y, Ghosh BK. Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans Syst Man Cybern Syst. 2022;52(10):6618–29.CrossRef Chen B, Hu J, Zhao Y, Ghosh BK. Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans Syst Man Cybern Syst. 2022;52(10):6618–29.CrossRef
41.
go back to reference Guo C, Hu J. Time base generator based practical predefined-time stabilization of high-order systems with unknown disturbance. IEEE Trans Circuits Syst Express Briefs. 2023. Guo C, Hu J. Time base generator based practical predefined-time stabilization of high-order systems with unknown disturbance. IEEE Trans Circuits Syst Express Briefs. 2023.
42.
go back to reference Chen C-FR, Fan Q, Panda R. Crossvit: Cross-attention multi-scale vision transformer for image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021. p. 357–366. Chen C-FR, Fan Q, Panda R. Crossvit: Cross-attention multi-scale vision transformer for image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021. p. 357–366.
43.
go back to reference Zhang M, Liu Z, Feng J, Liu L, Jiao L. Remote sensing image change detection based on deep multi-scale multi-attention Siamese transformer network. Remote Sens. 2023;15(3):842.CrossRef Zhang M, Liu Z, Feng J, Liu L, Jiao L. Remote sensing image change detection based on deep multi-scale multi-attention Siamese transformer network. Remote Sens. 2023;15(3):842.CrossRef
44.
go back to reference Meng Q, Ma Q, Shi Y. Adaptive fixed-time stabilization for a class of uncertain nonlinear systems. IEEE Trans Autom Control. 2023. Meng Q, Ma Q, Shi Y. Adaptive fixed-time stabilization for a class of uncertain nonlinear systems. IEEE Trans Autom Control. 2023.
45.
go back to reference Liu Y, Li G, Lin L. Cross-modal causal relational reasoning for event-level visual question answering. IEEE Trans Pattern Anal Mach Intell. 2023;45(10):11624–41.CrossRef Liu Y, Li G, Lin L. Cross-modal causal relational reasoning for event-level visual question answering. IEEE Trans Pattern Anal Mach Intell. 2023;45(10):11624–41.CrossRef
46.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Proces Syst. 2017;30:5998–6008. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Proces Syst. 2017;30:5998–6008.
48.
go back to reference Adetokunbo I, Henderson P, Hudson J. GPT-3. 5-turbo: Larger models have more capabilities. OpenAI Blog. 2021;6(21)1–5. Adetokunbo I, Henderson P, Hudson J. GPT-3. 5-turbo: Larger models have more capabilities. OpenAI Blog. 2021;6(21)1–5.
49.
go back to reference Liu Z, Wen C, Su Z, Liu S, Sun J, Kong W et al. Emotion-semantic-aware dual contrastive learning for epistemic emotion identification of learner-generated reviews in MOOCS. IEEE Trans Neural Netw Learn Syst. 2023. Liu Z, Wen C, Su Z, Liu S, Sun J, Kong W et al. Emotion-semantic-aware dual contrastive learning for epistemic emotion identification of learner-generated reviews in MOOCS. IEEE Trans Neural Netw Learn Syst. 2023.
50.
go back to reference Liang X, Huang Z, Yang S, Qiu L. Device-free motion and trajectory detection via RFID. ACM Trans Embed Comput Syst. 2018;17(4):78.CrossRef Liang X, Huang Z, Yang S, Qiu L. Device-free motion and trajectory detection via RFID. ACM Trans Embed Comput Syst. 2018;17(4):78.CrossRef
51.
go back to reference Tay Y, Bahri D, Metzler D, Juan D-C, Zhao Z, Zheng C. Synthesizer: Rethinking self-attention for transformer models. In: International Conference on Machine Learning. PMLR; 2021. p. 10183–92. Tay Y, Bahri D, Metzler D, Juan D-C, Zhao Z, Zheng C. Synthesizer: Rethinking self-attention for transformer models. In: International Conference on Machine Learning. PMLR; 2021. p. 10183–92.
52.
go back to reference Chefer H, Gur S, Wolf L. Transformer interpretability beyond attention visualization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. p. 782–91. Chefer H, Gur S, Wolf L. Transformer interpretability beyond attention visualization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. p. 782–91.
53.
55.
go back to reference Liu C, Wu T, Li Z, Ma T, Huang J. Robust online tensor completion for IoT streaming data recovery. IEEE Trans Neural Netw Learn Syst. 2022. Liu C, Wu T, Li Z, Ma T, Huang J. Robust online tensor completion for IoT streaming data recovery. IEEE Trans Neural Netw Learn Syst. 2022.
56.
go back to reference Liu J, Fan C, Peng Y, Du J, Wang Z et al. Emergent leader-follower relationship in networked multiagent systems. Sci China Inf Sci. 2023. Liu J, Fan C, Peng Y, Du J, Wang Z et al. Emergent leader-follower relationship in networked multiagent systems. Sci China Inf Sci. 2023.
57.
go back to reference Chen X, Zhang H, Zhao F, Cai Y, Wang H, Ye Q. Vehicle trajectory prediction based on intention-aware non-autoregressive transformer with multi-attention learning for internet of vehicles. IEEE Trans Instrum Meas. 2022;71:1–12. Chen X, Zhang H, Zhao F, Cai Y, Wang H, Ye Q. Vehicle trajectory prediction based on intention-aware non-autoregressive transformer with multi-attention learning for internet of vehicles. IEEE Trans Instrum Meas. 2022;71:1–12.
58.
go back to reference Hassani A, Walton S, Li J, Li S, Shi H. Neighborhood attention transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. p. 6185–94. Hassani A, Walton S, Li J, Li S, Shi H. Neighborhood attention transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. p. 6185–94.
59.
go back to reference Sridhar S, Sanagavarapu S. Multi-head self-attention transformer for dogecoin price prediction. In: 2021 14th International Conference on Human System Interaction (HSI). IEEE; 2021. p. 1–6. Sridhar S, Sanagavarapu S. Multi-head self-attention transformer for dogecoin price prediction. In: 2021 14th International Conference on Human System Interaction (HSI). IEEE; 2021. p. 1–6.
60.
go back to reference Guo F, Zhou W, Lu Q, Zhang C. Path extension similarity link prediction method based on matrix algebra in directed networks. Comput Commun. 2022;187:83–92.CrossRef Guo F, Zhou W, Lu Q, Zhang C. Path extension similarity link prediction method based on matrix algebra in directed networks. Comput Commun. 2022;187:83–92.CrossRef
61.
go back to reference Shen Y, Ding N, Zheng HT, Li Y, Yang M. Modeling relation paths for knowledge graph completion. IEEE Trans Knowl Data Eng. 2021;33(11):3607–17. Shen Y, Ding N, Zheng HT, Li Y, Yang M. Modeling relation paths for knowledge graph completion. IEEE Trans Knowl Data Eng. 2021;33(11):3607–17.
62.
go back to reference Huang J, Poulis A, Pappas N, Weiss R, Zoph B, Vaswani A, Le QV. Language models are few-shot learners. In: Advances in Neural Information Processing Systems. 2020. p. 1877–901. Huang J, Poulis A, Pappas N, Weiss R, Zoph B, Vaswani A, Le QV. Language models are few-shot learners. In: Advances in Neural Information Processing Systems. 2020. p. 1877–901.
63.
go back to reference Dixon L, Li Y, Sorelle A, Vasserman L, Zettlemoyer L, Weld DS. Measuring and mitigating unintended bias in text classification. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. 2018. p. 67–73. Dixon L, Li Y, Sorelle A, Vasserman L, Zettlemoyer L, Weld DS. Measuring and mitigating unintended bias in text classification. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. 2018. p. 67–73.
64.
go back to reference Wang X, Gao Y, Xie J, Chen H, Deng L. Turing natural language generation: A scalable pretrained Chinese text-to-text generation model, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics. 2020. p. 2651–61. Wang X, Gao Y, Xie J, Chen H, Deng L. Turing natural language generation: A scalable pretrained Chinese text-to-text generation model, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics. 2020. p. 2651–61.
65.
66.
go back to reference Bender EM, Gebru T. The dangers of stylized language: Emergent biases and sociotechnical remedies. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. ACM; 2021. p. 610–623. Bender EM, Gebru T. The dangers of stylized language: Emergent biases and sociotechnical remedies. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. ACM; 2021. p. 610–623.
67.
go back to reference Cao Y, Lin Z, Xu X, Tang Y, Zhang Z, Zhang Y. Clinic: A secure peer-to-peer healthcare blockchain framework with privacy preservation. IEEE Trans Ind Inf. 2020;16(6):4384–95. Cao Y, Lin Z, Xu X, Tang Y, Zhang Z, Zhang Y. Clinic: A secure peer-to-peer healthcare blockchain framework with privacy preservation. IEEE Trans Ind Inf. 2020;16(6):4384–95.
68.
go back to reference Naidoo V. AI-powered chatbots for healthcare: A systematic review. Healthc Inform Res. 2021;27(1):39–50. Naidoo V. AI-powered chatbots for healthcare: A systematic review. Healthc Inform Res. 2021;27(1):39–50.
69.
go back to reference Ghai S, Ghai I. Artificial intelligence in healthcare: Current perspectives. India J Med Specialities. 2020;11(2):57–62. Ghai S, Ghai I. Artificial intelligence in healthcare: Current perspectives. India J Med Specialities. 2020;11(2):57–62.
70.
go back to reference Liu X, Faes L, Kale AU, Wagner SK, Fu DJ. Deep learning for healthcare decision making with EMR data. IEEE J Biomed Health Inform. 2020;24(11):3200–12. Liu X, Faes L, Kale AU, Wagner SK, Fu DJ. Deep learning for healthcare decision making with EMR data. IEEE J Biomed Health Inform. 2020;24(11):3200–12.
71.
go back to reference Lam W, Demirjian N, Lau L. Patient education and artificial intelligence in the era of personalized medicine. Patient Educ Couns. 2021;104(3):463–8. Lam W, Demirjian N, Lau L. Patient education and artificial intelligence in the era of personalized medicine. Patient Educ Couns. 2021;104(3):463–8.
72.
go back to reference Smith SF, O’Connor M, Agha Z, Larrabee H, Hollander JE. The impact of artificial intelligence on healthcare delivery. J Gen Intern Med. 2020;35(5):1545–8. Smith SF, O’Connor M, Agha Z, Larrabee H, Hollander JE. The impact of artificial intelligence on healthcare delivery. J Gen Intern Med. 2020;35(5):1545–8.
73.
go back to reference Nielsen M, Skriver C, Lyngsøe AM, Hejlesen O. The use of chatbots in healthcare: Systematic review. J Med Internet Res. 2021;23(2):e20531. Nielsen M, Skriver C, Lyngsøe AM, Hejlesen O. The use of chatbots in healthcare: Systematic review. J Med Internet Res. 2021;23(2):e20531.
74.
go back to reference Yang J, Zheng S, Tan SSY, Zhang Q. Development of a chatbot for mental health screening and promotion in adolescents: Case study of the implementation of google’s conversational agent in hong kong. JMIR Ment Health. 2020;7(11):e22619. Yang J, Zheng S, Tan SSY, Zhang Q. Development of a chatbot for mental health screening and promotion in adolescents: Case study of the implementation of google’s conversational agent in hong kong. JMIR Ment Health. 2020;7(11):e22619.
75.
go back to reference Blanco-Mavillard I, Molina-García JM, Flores-Calderón J, Señarís-González F, García-González M, Castro-Sánchez AM, Lomas-Vega R. Artificial intelligence in telemedicine: A bibliometric analysis. J Med Internet Res. 2021;23(3):e24598. Blanco-Mavillard I, Molina-García JM, Flores-Calderón J, Señarís-González F, García-González M, Castro-Sánchez AM, Lomas-Vega R. Artificial intelligence in telemedicine: A bibliometric analysis. J Med Internet Res. 2021;23(3):e24598.
76.
go back to reference Marshall MT, Kallmann M, Cavazza M. Narrative intelligence in interactive systems: A comprehensive survey. In: Proceedings of the 2020 Conference on User Modeling Adaptation and Personalization. ACM; 2020. p. 339–48. Marshall MT, Kallmann M, Cavazza M. Narrative intelligence in interactive systems: A comprehensive survey. In: Proceedings of the 2020 Conference on User Modeling Adaptation and Personalization. ACM; 2020. p. 339–48.
77.
go back to reference Wardrip-Fruin N, Mateas M. The role of non-player characters in game-based learning for k-12 education. In: Proceedings of the 14th International Conference on the Foundations of Digital Games. ACM; 2019. p. 1–8. Wardrip-Fruin N, Mateas M. The role of non-player characters in game-based learning for k-12 education. In: Proceedings of the 14th International Conference on the Foundations of Digital Games. ACM; 2019. p. 1–8.
78.
go back to reference Zhang J, Tang Y, Wang H, Xu K. ASRO-DIO: Active subspace random optimization based depth inertial odometry. IEEE Trans Robot. 2022;1–13. Zhang J, Tang Y, Wang H, Xu K. ASRO-DIO: Active subspace random optimization based depth inertial odometry. IEEE Trans Robot. 2022;1–13.
79.
go back to reference Li D, Yu H, Tee KP, Wu YS, Ge S et al. On time-synchronized stability and control. IEEE Trans Syst Man Cybern Syst. 2021;1–14. Li D, Yu H, Tee KP, Wu YS, Ge S et al. On time-synchronized stability and control. IEEE Trans Syst Man Cybern Syst. 2021;1–14.
80.
go back to reference Xu J, Park SH, Zhang X, Hu J. The improvement of road driving safety guided by visual inattentional blindness. IEEE Trans Intell Transp Syst. 2022;23(6):4972–4981. Xu J, Park SH, Zhang X, Hu J. The improvement of road driving safety guided by visual inattentional blindness. IEEE Trans Intell Transp Syst. 2022;23(6):4972–4981.
81.
go back to reference Xu J, Guo K, Sun PZH. Driving performance under violations of traffic rules: Novice vs. experienced drivers. IEEE Trans Intell Veh. 2022. Xu J, Guo K, Sun PZH. Driving performance under violations of traffic rules: Novice vs. experienced drivers. IEEE Trans Intell Veh. 2022.
82.
go back to reference Lu S, Ding Y, Liu M, Yin Z, Yin L, et al. Multiscale feature extraction and fusion of image and text in VQA. Int J Comput Intell Syst. 2023;16(1):54.CrossRef Lu S, Ding Y, Liu M, Yin Z, Yin L, et al. Multiscale feature extraction and fusion of image and text in VQA. Int J Comput Intell Syst. 2023;16(1):54.CrossRef
83.
go back to reference Li T, Li Y, Hoque MA, Xia T, Tarkoma S, et al. To what extent we repeat ourselves? Discovering daily activity patterns across mobile app usage. IEEE Trans Mob Comput. 2022;21(4):1492–507.CrossRef Li T, Li Y, Hoque MA, Xia T, Tarkoma S, et al. To what extent we repeat ourselves? Discovering daily activity patterns across mobile app usage. IEEE Trans Mob Comput. 2022;21(4):1492–507.CrossRef
84.
go back to reference Liu X, Zhou G, Kong M, Yin Z, Li X, Yin L, et al. Developing multi-labelled corpus of twitter short texts: A semi-automatic method. Systems. 2023;11(8):390.CrossRef Liu X, Zhou G, Kong M, Yin Z, Li X, Yin L, et al. Developing multi-labelled corpus of twitter short texts: A semi-automatic method. Systems. 2023;11(8):390.CrossRef
85.
go back to reference Yuan H, Yang B. System dynamics approach for evaluating the interconnection performance of cross-border transport infrastructure. J Manag Eng. 2022;38(3). Yuan H, Yang B. System dynamics approach for evaluating the interconnection performance of cross-border transport infrastructure. J Manag Eng. 2022;38(3).
86.
go back to reference Xiao Y, Zuo X, Huang J, Konak A, Xu Y. The continuous pollution routing problem. Appl Math Comput. 2020;387:125072. Xiao Y, Zuo X, Huang J, Konak A, Xu Y. The continuous pollution routing problem. Appl Math Comput. 2020;387:125072.
87.
go back to reference Liu X, Wang S, Lu S, Yin Z, Li X, Yin L, et al. Adapting feature selection algorithms for the classification of Chinese texts. Systems. 2023;11(9):483.CrossRef Liu X, Wang S, Lu S, Yin Z, Li X, Yin L, et al. Adapting feature selection algorithms for the classification of Chinese texts. Systems. 2023;11(9):483.CrossRef
88.
go back to reference Liu X, Shi T, Zhou G, Liu M, Yin Z, Yin L, et al. Emotion classification for short texts: an improved multi-label method. Humanit Soc Sci Commun. 2023;10(1):306.CrossRef Liu X, Shi T, Zhou G, Liu M, Yin Z, Yin L, et al. Emotion classification for short texts: an improved multi-label method. Humanit Soc Sci Commun. 2023;10(1):306.CrossRef
89.
go back to reference Deng Y, Zhang W, Xu W, Shen Y, Lam W. Nonfactoid question answering as query-focused summarization with graph-enhanced multihop inference. IEEE Trans Neural Netw Learn Syst. 2023. Deng Y, Zhang W, Xu W, Shen Y, Lam W. Nonfactoid question answering as query-focused summarization with graph-enhanced multihop inference. IEEE Trans Neural Netw Learn Syst. 2023.
Metadata
Title
Transforming Conversations with AI—A Comprehensive Study of ChatGPT
Authors
Gaurang Bansal
Vinay Chamola
Amir Hussain
Mohsen Guizani
Dusit Niyato
Publication date
24-01-2024
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10236-2

Premium Partner