Skip to main content
Top
Published in: Acta Mechanica 1/2020

10-10-2019 | Original Paper

Transient acoustic wave propagation in bone-like porous materials using the theory of poroelasticity and fractional derivative: a sensitivity analysis

Authors: M. Hodaei, V. Rabbani, P. Maghoul

Published in: Acta Mechanica | Issue 1/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the transient acoustic wave propagation in a bone-like porous material saturated with a viscous fluid was investigated using Biot’s theory. Due to the interaction between the viscous fluid and solid skeleton, the damping behavior is proportional to a fractional power of frequency, i.e., the dynamic tortuosity was written in terms of the fractional power of frequency. Furthermore, to describe the viscous interaction of fluid and solid in the time domain, the fractional derivative was used. The fast and slow waves, which are the solutions to Biot’s equations, were described by fractional calculus in the time domain. The reflection and transmission operators were expressed in the Laplace domain and inverted into the time domain using Durbin’s numerical inversion. Once the numerical implementation was validated, the effects of porosity and viscosity on the stress, and reflected and transmitted waves were investigated. The results showed that by increasing the porosity the stress in a bone-like material filled with either air or bone marrow increases. The transmitted pressure decreases by increasing the porosity. The reflected pressure decreases for low viscous fluid when the porosity increases while it increases when the viscosity of the fluid is high. In addition, the results showed the importance of taking into account the fractional derivatives in the transient wave propagation in such porous materials.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anderson, C.C., Marutyan, K.R., Holland, M.R., Wear, K.A., Miller, J.G.: Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone. J. Acoust. Soc. Am. 124(3), 1781–1789 (2008) Anderson, C.C., Marutyan, K.R., Holland, M.R., Wear, K.A., Miller, J.G.: Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone. J. Acoust. Soc. Am. 124(3), 1781–1789 (2008)
2.
go back to reference Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986)MATH Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986)MATH
3.
go back to reference Belhocine, F., Derible, S., Franklin, H.: Transition term method for the analysis of the reflected and the transmitted acoustic signals from water-saturated porous plates. J. Acoust. Soc. Am. 122(3), 1518–1526 (2007) Belhocine, F., Derible, S., Franklin, H.: Transition term method for the analysis of the reflected and the transmitted acoustic signals from water-saturated porous plates. J. Acoust. Soc. Am. 122(3), 1518–1526 (2007)
4.
go back to reference Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)MATH Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)MATH
5.
go back to reference Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182–185 (1955)MathSciNetMATH Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182–185 (1955)MathSciNetMATH
6.
go back to reference Biot, M.A.: General solutions of the equations of elasticity and consolidation for a porous material. J. Appl. Mech. 23(1), 91–96 (1956)MathSciNetMATH Biot, M.A.: General solutions of the equations of elasticity and consolidation for a porous material. J. Appl. Mech. 23(1), 91–96 (1956)MathSciNetMATH
7.
go back to reference Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)MathSciNet Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)MathSciNet
8.
go back to reference Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33(4), 1482–1498 (1962)MathSciNetMATH Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33(4), 1482–1498 (1962)MathSciNetMATH
9.
go back to reference Buchanan, J.L., Gilbert, R.P.: Determination of the parameters of cancellous bone using high frequency acoustic measurements. Math. Comput. Model. 45(3–4), 281–308 (2007)MathSciNetMATH Buchanan, J.L., Gilbert, R.P.: Determination of the parameters of cancellous bone using high frequency acoustic measurements. Math. Comput. Model. 45(3–4), 281–308 (2007)MathSciNetMATH
10.
go back to reference Buchanan, J.L., Gilbert, R.P., Khashanah, K.: Recovery of the poroelastic parameters of cancellous bone using low frequency acoustic interrogation. In: Acoustics, Mechanics, and the Related Topics of Mathematical Analysis, pp. 41–47. World Scientific, Singapore (2002) Buchanan, J.L., Gilbert, R.P., Khashanah, K.: Recovery of the poroelastic parameters of cancellous bone using low frequency acoustic interrogation. In: Acoustics, Mechanics, and the Related Topics of Mathematical Analysis, pp. 41–47. World Scientific, Singapore (2002)
11.
go back to reference Buchanan, J.L., Gilbert, R.P., Khashanah, K.: Determination of the parameters of cancellous bone using low frequency acoustic measurements. J. Comput. Acoust. 12(02), 99–126 (2004)MATH Buchanan, J.L., Gilbert, R.P., Khashanah, K.: Determination of the parameters of cancellous bone using low frequency acoustic measurements. J. Comput. Acoust. 12(02), 99–126 (2004)MATH
12.
go back to reference Buchanan, J.L., Gilbert, R.P., Ou, M.-J.: Transfer functions for a one-dimensional fluid–poroelastic system subject to an ultrasonic pulse. Nonlinear Anal. Real World Appl. 13(3), 1030–1043 (2012)MathSciNetMATH Buchanan, J.L., Gilbert, R.P., Ou, M.-J.: Transfer functions for a one-dimensional fluid–poroelastic system subject to an ultrasonic pulse. Nonlinear Anal. Real World Appl. 13(3), 1030–1043 (2012)MathSciNetMATH
13.
go back to reference Butzer, P.L., Westphal, U.: An introduction to fractional calculus. In: Applications of Fractional Calculus in Physics, pp. 1–85. World Scientific, Singapore (2000)MATH Butzer, P.L., Westphal, U.: An introduction to fractional calculus. In: Applications of Fractional Calculus in Physics, pp. 1–85. World Scientific, Singapore (2000)MATH
14.
go back to reference Caputo, M.: Vibrations of an infinite plate with a frequency independent q. J. Acoust. Soc. Am. 60(3), 634–639 (1976) Caputo, M.: Vibrations of an infinite plate with a frequency independent q. J. Acoust. Soc. Am. 60(3), 634–639 (1976)
15.
go back to reference Cardoso, L., Cowin, S.C.: Fabric dependence of quasi-waves in anisotropic porous media. J. Acoust. Soc. Am. 129(5), 3302–3316 (2011) Cardoso, L., Cowin, S.C.: Fabric dependence of quasi-waves in anisotropic porous media. J. Acoust. Soc. Am. 129(5), 3302–3316 (2011)
16.
go back to reference Cardoso, L., Teboul, F., Sedel, L., Oddou, C., Meunier, A.: In vitro acoustic waves propagation in human and bovine cancellous bone. J. Bone Miner. Res. 18(10), 1803–1812 (2003) Cardoso, L., Teboul, F., Sedel, L., Oddou, C., Meunier, A.: In vitro acoustic waves propagation in human and bovine cancellous bone. J. Bone Miner. Res. 18(10), 1803–1812 (2003)
17.
go back to reference Caviglia, G., Morro, A.: A closed-form solution for reflection and transmission of transient waves in multilayers. J. Acoust. Soc. Am. 116(2), 643–654 (2004) Caviglia, G., Morro, A.: A closed-form solution for reflection and transmission of transient waves in multilayers. J. Acoust. Soc. Am. 116(2), 643–654 (2004)
18.
go back to reference Durbin, F.: Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput. J. 17(4), 371–376 (1974)MathSciNetMATH Durbin, F.: Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput. J. 17(4), 371–376 (1974)MathSciNetMATH
19.
go back to reference Fan, S., Li, S., Yu, G.: Dynamic fluid–structure interaction analysis using boundary finite element method–finite element method. J. Appl. Mech. 72(4), 591–598 (2005)MATH Fan, S., Li, S., Yu, G.: Dynamic fluid–structure interaction analysis using boundary finite element method–finite element method. J. Appl. Mech. 72(4), 591–598 (2005)MATH
20.
go back to reference Fellah, M., Fellah, Z.E.A., Depollier, C.: Generalized hyperbolic fractional equation for transient-wave propagation in layered rigid-frame porous materials. Phys. Rev. E 77(1), 016601 (2008) Fellah, M., Fellah, Z.E.A., Depollier, C.: Generalized hyperbolic fractional equation for transient-wave propagation in layered rigid-frame porous materials. Phys. Rev. E 77(1), 016601 (2008)
21.
go back to reference Fellah, M., Fellah, Z.E.A., Mitri, F., Ogam, E., Depollier, C.: Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone. J. Acoust. Soc. Am. 133(4), 1867–1881 (2013) Fellah, M., Fellah, Z.E.A., Mitri, F., Ogam, E., Depollier, C.: Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone. J. Acoust. Soc. Am. 133(4), 1867–1881 (2013)
22.
go back to reference Fellah, Z., Depollier, C.: Transient acoustic wave propagation in rigid porous media: a time-domain approach. J. Acoust. Soc. Am. 107(2), 683–688 (2000) Fellah, Z., Depollier, C.: Transient acoustic wave propagation in rigid porous media: a time-domain approach. J. Acoust. Soc. Am. 107(2), 683–688 (2000)
23.
go back to reference Fellah, Z., Depollier, C., Fellah, M.: Application of fractional calculus to the sound waves propagation in rigid porous materials: validation via ultrasonic measurements. Acta Acust. United Acust. 88(1), 34–39 (2002) Fellah, Z., Depollier, C., Fellah, M.: Application of fractional calculus to the sound waves propagation in rigid porous materials: validation via ultrasonic measurements. Acta Acust. United Acust. 88(1), 34–39 (2002)
24.
go back to reference Fellah, Z.A., Sebaa, N., Fellah, M., Mitri, F., Ogam, E., Depollier, C.: Ultrasonic characterization of air-saturated double-layered porous media in time domain. J. Appl. Phys. 108(1), 014909 (2010) Fellah, Z.A., Sebaa, N., Fellah, M., Mitri, F., Ogam, E., Depollier, C.: Ultrasonic characterization of air-saturated double-layered porous media in time domain. J. Appl. Phys. 108(1), 014909 (2010)
25.
go back to reference Fellah, Z.E.A., Berger, S., Lauriks, W., Depollier, C.: Verification of Kramers-Kronig relationship in porous materials having a rigid frame. J. Sound Vib. 270(4–5), 865–885 (2004) Fellah, Z.E.A., Berger, S., Lauriks, W., Depollier, C.: Verification of Kramers-Kronig relationship in porous materials having a rigid frame. J. Sound Vib. 270(4–5), 865–885 (2004)
26.
go back to reference Fellah, Z.E.A., Chapelon, J.Y., Berger, S., Lauriks, W., Depollier, C.: Ultrasonic wave propagation in human cancellous bone: application of Biot theory. J. Acoust. Soc. Am. 116(1), 61–73 (2004) Fellah, Z.E.A., Chapelon, J.Y., Berger, S., Lauriks, W., Depollier, C.: Ultrasonic wave propagation in human cancellous bone: application of Biot theory. J. Acoust. Soc. Am. 116(1), 61–73 (2004)
27.
go back to reference Fellah, Z.E.A., Fellah, M., Lauriks, W., Depollier, C.: Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material. J. Acoust. Soc. Am. 113(1), 61–72 (2003)MATH Fellah, Z.E.A., Fellah, M., Lauriks, W., Depollier, C.: Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material. J. Acoust. Soc. Am. 113(1), 61–72 (2003)MATH
28.
go back to reference Fellah, Z.E.A., Wirgin, A., Fellah, M., Sebaa, N., Depollier, C., Lauriks, W.: A time-domain model of transient acoustic wave propagation in double-layered porous media. J. Acoust. Soc. Am. 118(2), 661–670 (2005) Fellah, Z.E.A., Wirgin, A., Fellah, M., Sebaa, N., Depollier, C., Lauriks, W.: A time-domain model of transient acoustic wave propagation in double-layered porous media. J. Acoust. Soc. Am. 118(2), 661–670 (2005)
29.
go back to reference Fritsch, A., Hellmich, C.: ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J. Theor. Biol. 244(4), 597–620 (2007) Fritsch, A., Hellmich, C.: ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J. Theor. Biol. 244(4), 597–620 (2007)
30.
go back to reference Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order (2008). arXiv preprint arXiv:0805.3823 Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order (2008). arXiv preprint arXiv:​0805.​3823
31.
go back to reference Haire, T., Langton, C.: Biot theory: a review of its application to ultrasound propagation through cancellous bone. Bone 24(4), 291–295 (1999) Haire, T., Langton, C.: Biot theory: a review of its application to ultrasound propagation through cancellous bone. Bone 24(4), 291–295 (1999)
32.
go back to reference Hanyga, A., Rok, V.E.: Wave propagation in micro-heterogeneous porous media: a model based on an integro-differential wave equation. J. Acoust. Soc. Am. 107(6), 2965–2972 (2000) Hanyga, A., Rok, V.E.: Wave propagation in micro-heterogeneous porous media: a model based on an integro-differential wave equation. J. Acoust. Soc. Am. 107(6), 2965–2972 (2000)
33.
go back to reference Hasheminejad, S.M., Alaei-Varnosfaderani, M.: Vibroacoustic response and active control of a fluid-filled functionally graded piezoelectric material composite cylinder. J. Intell. Mater. Syst. Struct. 23(7), 775–790 (2012) Hasheminejad, S.M., Alaei-Varnosfaderani, M.: Vibroacoustic response and active control of a fluid-filled functionally graded piezoelectric material composite cylinder. J. Intell. Mater. Syst. Struct. 23(7), 775–790 (2012)
34.
go back to reference Hasheminejad, S.M., Mousavi-Akbarzadeh, H.: Three dimensional non-axisymmetric transient acoustic radiation from an eccentric hollow cylinder. Wave Motion 50(4), 723–738 (2013)MATH Hasheminejad, S.M., Mousavi-Akbarzadeh, H.: Three dimensional non-axisymmetric transient acoustic radiation from an eccentric hollow cylinder. Wave Motion 50(4), 723–738 (2013)MATH
35.
go back to reference Hosokawa, A., Otani, T.: Ultrasonic wave propagation in bovine cancellous bone. J. Acoust. Soc. Am. 101(1), 558–562 (1997) Hosokawa, A., Otani, T.: Ultrasonic wave propagation in bovine cancellous bone. J. Acoust. Soc. Am. 101(1), 558–562 (1997)
36.
go back to reference Hosokawa, A., Otani, T.: Acoustic anisotropy in bovine cancellous bone. J. Acoust. Soc. Am. 103(5), 2718–2722 (1998) Hosokawa, A., Otani, T.: Acoustic anisotropy in bovine cancellous bone. J. Acoust. Soc. Am. 103(5), 2718–2722 (1998)
37.
go back to reference Hughes, E.R., Leighton, T.G., White, P.R., Petley, G.W.: Investigation of an anisotropic tortuosity in a Biot model of ultrasonic propagation in cancellous bone. J. Acoust. Soc. Am. 121(1), 568–574 (2007) Hughes, E.R., Leighton, T.G., White, P.R., Petley, G.W.: Investigation of an anisotropic tortuosity in a Biot model of ultrasonic propagation in cancellous bone. J. Acoust. Soc. Am. 121(1), 568–574 (2007)
38.
go back to reference Johnson, D.L., Koplik, J., Dashen, R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379–402 (1987)MATH Johnson, D.L., Koplik, J., Dashen, R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379–402 (1987)MATH
39.
go back to reference Johnson, D.L., Plona, T.J., Kojima, H.: Probing porous media with first and second sound. II. Acoustic properties of water-saturated porous media. J. Appl. Phys. 76(1), 115–125 (1994) Johnson, D.L., Plona, T.J., Kojima, H.: Probing porous media with first and second sound. II. Acoustic properties of water-saturated porous media. J. Appl. Phys. 76(1), 115–125 (1994)
40.
go back to reference Langton, C., Palmer, S., Porter, R.: The measurement of broadband ultrasonic attenuation in cancellous bone. Eng. Med. 13(2), 89–91 (1984) Langton, C., Palmer, S., Porter, R.: The measurement of broadband ultrasonic attenuation in cancellous bone. Eng. Med. 13(2), 89–91 (1984)
41.
go back to reference Li, J., Ostoja-Starzewski, M.: Application of fractional calculus to fractal media. In: Applications in Physics, Part A, pp. 263–276 (2019) Li, J., Ostoja-Starzewski, M.: Application of fractional calculus to fractal media. In: Applications in Physics, Part A, pp. 263–276 (2019)
42.
go back to reference Marutyan, K.R., Holland, M.R., Miller, J.G.: Anomalous negative dispersion in bone can result from the interference of fast and slow waves. J. Acoust. Soc. Am. 120(5), EL55–EL61 (2006) Marutyan, K.R., Holland, M.R., Miller, J.G.: Anomalous negative dispersion in bone can result from the interference of fast and slow waves. J. Acoust. Soc. Am. 120(5), EL55–EL61 (2006)
43.
go back to reference Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations (1993) Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations (1993)
44.
go back to reference Mizuno, K., Matsukawa, M., Otani, T., Laugier, P., Padilla, F.: Propagation of two longitudinal waves in human cancellous bone: an in vitro study. J. Acoust. Soc. Am. 125(5), 3460–3466 (2009) Mizuno, K., Matsukawa, M., Otani, T., Laugier, P., Padilla, F.: Propagation of two longitudinal waves in human cancellous bone: an in vitro study. J. Acoust. Soc. Am. 125(5), 3460–3466 (2009)
45.
go back to reference Nelson, A.M., Hoffman, J.J., Anderson, C.C., Holland, M.R., Nagatani, Y., Mizuno, K., Matsukawa, M., Miller, J.G.: Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone. J. Acoust. Soc. Am. 130(4), 2233–2240 (2011) Nelson, A.M., Hoffman, J.J., Anderson, C.C., Holland, M.R., Nagatani, Y., Mizuno, K., Matsukawa, M., Miller, J.G.: Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone. J. Acoust. Soc. Am. 130(4), 2233–2240 (2011)
46.
go back to reference Norton, G.V., Novarini, J.C.: Including dispersion and attenuation directly in the time domain for wave propagation in isotropic media. J. Acoust. Soc. Am. 113(6), 3024–3031 (2003) Norton, G.V., Novarini, J.C.: Including dispersion and attenuation directly in the time domain for wave propagation in isotropic media. J. Acoust. Soc. Am. 113(6), 3024–3031 (2003)
47.
go back to reference Ogam, E., Fellah, Z.E.A., Sebaa, N., Groby, J.-P.: Non-ambiguous recovery of Biot poroelastic parameters of cellular panels using ultrasonic waves. J. Sound Vib. 330(6), 1074–1090 (2011) Ogam, E., Fellah, Z.E.A., Sebaa, N., Groby, J.-P.: Non-ambiguous recovery of Biot poroelastic parameters of cellular panels using ultrasonic waves. J. Sound Vib. 330(6), 1074–1090 (2011)
48.
go back to reference Oldham, K., Spanier, J.: The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order, vol. 111. Elsevier, Amsterdam (1974)MATH Oldham, K., Spanier, J.: The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order, vol. 111. Elsevier, Amsterdam (1974)MATH
49.
go back to reference Ostoja-Starzewski, M., Zhang, J.: Does a fractal microstructure require a fractional viscoelastic model? Fractal Fract. 2(1), 12 (2018) Ostoja-Starzewski, M., Zhang, J.: Does a fractal microstructure require a fractional viscoelastic model? Fractal Fract. 2(1), 12 (2018)
50.
go back to reference Pakula, M., Padilla, F., Laugier, P., Kaczmarek, M.: Application of Biot’s theory to ultrasonic characterization of human cancellous bones: determination of structural, material, and mechanical properties. J. Acoust. Soc. Am. 123(4), 2415–2423 (2008) Pakula, M., Padilla, F., Laugier, P., Kaczmarek, M.: Application of Biot’s theory to ultrasonic characterization of human cancellous bones: determination of structural, material, and mechanical properties. J. Acoust. Soc. Am. 123(4), 2415–2423 (2008)
51.
go back to reference Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50(1), 15–67 (1997) Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50(1), 15–67 (1997)
52.
go back to reference Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications (1993) Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications (1993)
53.
go back to reference Sebaa, N., Fellah, Z.E.A., Fellah, M., Ogam, E., Wirgin, A., Mitri, F., Depollier, C., Lauriks, W.: Ultrasonic characterization of human cancellous bone using the Biot theory: inverse problem. J. Acoust. Soc. Am. 120(4), 1816–1824 (2006) Sebaa, N., Fellah, Z.E.A., Fellah, M., Ogam, E., Wirgin, A., Mitri, F., Depollier, C., Lauriks, W.: Ultrasonic characterization of human cancellous bone using the Biot theory: inverse problem. J. Acoust. Soc. Am. 120(4), 1816–1824 (2006)
54.
go back to reference Szabo, T.L.: Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am. 96(1), 491–500 (1994) Szabo, T.L.: Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am. 96(1), 491–500 (1994)
55.
go back to reference Waters, K.R., Hughes, M.S., Brandenburger, G.H., Miller, J.G.: On a time-domain representation of the Kramers–Krönig dispersion relations. J. Acoust. Soc. Am. 108(5), 2114–2119 (2000) Waters, K.R., Hughes, M.S., Brandenburger, G.H., Miller, J.G.: On a time-domain representation of the Kramers–Krönig dispersion relations. J. Acoust. Soc. Am. 108(5), 2114–2119 (2000)
56.
go back to reference Wear, K.A.: Cancellous bone analysis with modified least squares Prony’s method and chirp filter: phantom experiments and simulation. J. Acoust. Soc. Am. 128(4), 2191–2203 (2010) Wear, K.A.: Cancellous bone analysis with modified least squares Prony’s method and chirp filter: phantom experiments and simulation. J. Acoust. Soc. Am. 128(4), 2191–2203 (2010)
57.
go back to reference Wu, K., Xue, Q., Adler, L.: Reflection and transmission of elastic waves from a fluid-saturated porous solid boundary. J. Acoust. Soc. Am. 87(6), 2349–2358 (1990) Wu, K., Xue, Q., Adler, L.: Reflection and transmission of elastic waves from a fluid-saturated porous solid boundary. J. Acoust. Soc. Am. 87(6), 2349–2358 (1990)
58.
go back to reference Yang, X.J.: New rheological problems involving general fractional derivatives with nonsingular power-law kernels. In: Proceedings of the Romanian Academy Series A-Mathematics Physics Technican, pp. 45–52 (2018) Yang, X.J.: New rheological problems involving general fractional derivatives with nonsingular power-law kernels. In: Proceedings of the Romanian Academy Series A-Mathematics Physics Technican, pp. 45–52 (2018)
59.
go back to reference Yang, X.-J.: New general calculi with respect to another functions applied to describe the Newton-like dashpot models in anomalous viscoelasticity. Therm. Sci. (2019) Yang, X.-J.: New general calculi with respect to another functions applied to describe the Newton-like dashpot models in anomalous viscoelasticity. Therm. Sci. (2019)
60.
go back to reference Yang, X.J., Feng, G., Hong-Wen, J.: New mathematical models in anomalous viscoelasticity from the derivative with respect to another function view point. Therm. Sci. (2019) Yang, X.J., Feng, G., Hong-Wen, J.: New mathematical models in anomalous viscoelasticity from the derivative with respect to another function view point. Therm. Sci. (2019)
61.
go back to reference Yang, X.J., Ragulskis, M., Taha, T.: A new general fractional-order derivative with Rabotnov fractional–exponential kernel. Therm. Sci. (2019) Yang, X.J., Ragulskis, M., Taha, T.: A new general fractional-order derivative with Rabotnov fractional–exponential kernel. Therm. Sci. (2019)
62.
go back to reference Yang, X.-J., et al.: New general fractional-order rheological models with kernels of Mittag-Leffler functions. Romanian Rep. Phys. 69(4), 118 (2017) Yang, X.-J., et al.: New general fractional-order rheological models with kernels of Mittag-Leffler functions. Romanian Rep. Phys. 69(4), 118 (2017)
Metadata
Title
Transient acoustic wave propagation in bone-like porous materials using the theory of poroelasticity and fractional derivative: a sensitivity analysis
Authors
M. Hodaei
V. Rabbani
P. Maghoul
Publication date
10-10-2019
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 1/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02513-9

Other articles of this Issue 1/2020

Acta Mechanica 1/2020 Go to the issue

Premium Partners