Skip to main content
Top
Published in: Journal of Materials Science 5/2019

12-11-2018 | Composites

Transition from microcellular to nanocellular chain extended poly(lactic acid)/hydroxyl-functionalized graphene foams by supercritical CO2

Authors: Xianzeng Wang, Jianguo Mi, Hongfu Zhou, Xiangdong Wang

Published in: Journal of Materials Science | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Currently, preparing nanocellular semi-crystalline polymer foams by supercritical CO2 is a big and newly developing challenge. In this paper, chain extender (CE) and hydroxyl-functionalized graphene (HG) were introduced into poly(lactic acid) (PLA) through melt blending method to improve the crystallization behaviors, rheological properties and foaming behaviors of PLA. Differential scanning calorimetry results showed that the cold crystallization temperature of chain extended PLA (CPLA)/HG was higher 8.2 °C than that of CPLA, due to the introduction of HG and the strong interaction between CPLA and HG. The viscoelasticity of PLA was improved by the addition of CE and HG, due to the formation of branching structure and the interaction between CPLA and HG. Compared with that in PLA/HG, HG aggregation in CPLA/HG became many but small, indicating that the aggregation of HG in the matrix released. A facile batch foaming method with constant foaming temperature slightly lower than melting temperature was employed to fabricate nanocellular PLA foams in the presence of supercritical CO2. The transition temperature from microcells to nanocells in various PLA foams was confirmed. The effect of chain extension, foaming temperature and the introduction of HG on cell size, cell density, cell size distribution and volume expansion ratio (VER) was studied systematically. For the CPLA/HG foam prepared at 130 °C, its cell size could reach 350 ± 247 nm as well as its cell density and VER were 1.76 × 1013 cells/cm3 and 3.71 ± 0.16 times, respectively. Finally, the foaming mechanism for the nanocell formation was proposed and explained by schematic diagram.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Okolieocha C, Raps D, Subramaniam K, Altstadt V (2015) Microcellular to nanocellular polymer foams: progress (2004–2015) and future directions—a review. Eur Polym J 73:500–519CrossRef Okolieocha C, Raps D, Subramaniam K, Altstadt V (2015) Microcellular to nanocellular polymer foams: progress (2004–2015) and future directions—a review. Eur Polym J 73:500–519CrossRef
2.
go back to reference Muanchan P, Ito H (2018) Nanocellular foams confined within PS microfibers obtained by CO2 batch foaming process. Microsyst Technol 24:655–662CrossRef Muanchan P, Ito H (2018) Nanocellular foams confined within PS microfibers obtained by CO2 batch foaming process. Microsyst Technol 24:655–662CrossRef
3.
go back to reference Nofar M, Park CB (2014) Poly(lactic acid) foaming. Prog Polym Sci 39:1721–1741CrossRef Nofar M, Park CB (2014) Poly(lactic acid) foaming. Prog Polym Sci 39:1721–1741CrossRef
4.
go back to reference Yeh SK, Chen YR, Kang TW et al (2018) Different approaches for creating nanocellular TPU foams by supercritical CO2 foaming. J Polym Res 25:30CrossRef Yeh SK, Chen YR, Kang TW et al (2018) Different approaches for creating nanocellular TPU foams by supercritical CO2 foaming. J Polym Res 25:30CrossRef
5.
go back to reference Leon MD, Bernardo V, Rodriguez-Perez MA (2017) Key production parameters to obtain transparent nanocellular PMMA. Macromol Mater Eng 302:1700343CrossRef Leon MD, Bernardo V, Rodriguez-Perez MA (2017) Key production parameters to obtain transparent nanocellular PMMA. Macromol Mater Eng 302:1700343CrossRef
6.
go back to reference Luo Y, Ye C (2012) Using nanocapsules as building blocks to fabricate organic polymer nanofoam with ultra low thermal conductivity and high mechanical strength. Polymer 53:5699–5705CrossRef Luo Y, Ye C (2012) Using nanocapsules as building blocks to fabricate organic polymer nanofoam with ultra low thermal conductivity and high mechanical strength. Polymer 53:5699–5705CrossRef
7.
go back to reference Forest C, Chaumont P, Cassagnau P, Swoboda B, Sonntag P (2015) Polymer nano-foams for insulating applications prepared from CO2 foaming. Prog Polym Sci 41:122–145CrossRef Forest C, Chaumont P, Cassagnau P, Swoboda B, Sonntag P (2015) Polymer nano-foams for insulating applications prepared from CO2 foaming. Prog Polym Sci 41:122–145CrossRef
8.
go back to reference Ling J, Zhai W, Feng W, Shen B, Zhang J, Zheng WG (2013) A facile preparation of lightweight microcellular polyetherimide/graphene composites foams for electromagnetic interference (EMI) shielding. Acs Appl Mater Interfaces 5:2677–2684CrossRef Ling J, Zhai W, Feng W, Shen B, Zhang J, Zheng WG (2013) A facile preparation of lightweight microcellular polyetherimide/graphene composites foams for electromagnetic interference (EMI) shielding. Acs Appl Mater Interfaces 5:2677–2684CrossRef
9.
go back to reference Gaspard S, Oujja M, Nalda RD, Castillejo M, Banares L, Lazare S, Bonneau R (2008) Nanofoaming dynamics in biopolymers by femtosecond laser irradiation. Appl Phys A 93:209–213CrossRef Gaspard S, Oujja M, Nalda RD, Castillejo M, Banares L, Lazare S, Bonneau R (2008) Nanofoaming dynamics in biopolymers by femtosecond laser irradiation. Appl Phys A 93:209–213CrossRef
10.
go back to reference Reignier J, Huneault MA (2006) Preparation of interconnected poly(3-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer 47:4703–4717CrossRef Reignier J, Huneault MA (2006) Preparation of interconnected poly(3-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer 47:4703–4717CrossRef
11.
go back to reference Hong SM, Hwang SS (2006) A nanofoaming process and dielectric properties of polymethylphenylsilsesquioxane-based nanofoams. J Appl Polym Sci 100:4964–4971CrossRef Hong SM, Hwang SS (2006) A nanofoaming process and dielectric properties of polymethylphenylsilsesquioxane-based nanofoams. J Appl Polym Sci 100:4964–4971CrossRef
12.
go back to reference Costeux S (2014) CO2-blown nanocellular foams. J Appl Polym Sci 41293:1–16 Costeux S (2014) CO2-blown nanocellular foams. J Appl Polym Sci 41293:1–16
13.
go back to reference Costeux S, Zhu L (2013) Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer 54:2785–2795CrossRef Costeux S, Zhu L (2013) Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer 54:2785–2795CrossRef
14.
go back to reference Guo H, Kumar V (2015) Some thermodynamic and kinetic low-temperature properties of the PC-CO2 system and morphological characteristics of solid-state PC nanofoams produced with liquid CO2. Polymer 56:46–56CrossRef Guo H, Kumar V (2015) Some thermodynamic and kinetic low-temperature properties of the PC-CO2 system and morphological characteristics of solid-state PC nanofoams produced with liquid CO2. Polymer 56:46–56CrossRef
15.
go back to reference Tiwary P, Park CB, Kontopoulou M (2017) Transition from microcellular to nanocellular PLA foams by controlling viscosity, branching and crystallization. Eur Polym J 91:283–296CrossRef Tiwary P, Park CB, Kontopoulou M (2017) Transition from microcellular to nanocellular PLA foams by controlling viscosity, branching and crystallization. Eur Polym J 91:283–296CrossRef
16.
go back to reference Yi XJO, Lai YL, Davoodi P, Wang CH (2018) Production of drug-releasing biodegradable microporous scaffold using a two-step micro-encapsulation/supercritical foaming process. J Supercrit Fluid 133:263–269CrossRef Yi XJO, Lai YL, Davoodi P, Wang CH (2018) Production of drug-releasing biodegradable microporous scaffold using a two-step micro-encapsulation/supercritical foaming process. J Supercrit Fluid 133:263–269CrossRef
17.
go back to reference Lee ST (2004) Thermoplastic foam processing: Principles and development. CRC Press, Boca Raton Lee ST (2004) Thermoplastic foam processing: Principles and development. CRC Press, Boca Raton
18.
go back to reference Zhao H, Cui Z, Wang X, Turng LS, Peng X (2013) Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Compos Part B Eng 51:79–91CrossRef Zhao H, Cui Z, Wang X, Turng LS, Peng X (2013) Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Compos Part B Eng 51:79–91CrossRef
19.
go back to reference Wang X, Liu W, Zhou H, Liu B, Li H, Du Z, Zhang C (2013) Study on the effect of dispersion phase morphology on porous structure of poly(lactic acid)/poly(ethylene terephthalate glycol-modified) blending foams. Polymer 54:5839–5851CrossRef Wang X, Liu W, Zhou H, Liu B, Li H, Du Z, Zhang C (2013) Study on the effect of dispersion phase morphology on porous structure of poly(lactic acid)/poly(ethylene terephthalate glycol-modified) blending foams. Polymer 54:5839–5851CrossRef
20.
go back to reference Lu X, Tang L, Wang L, Zhao J, Li D, Wu Z, Xiao P (2016) Morphology and properties of bio-based poly(lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites. Polym Test 54:90–97CrossRef Lu X, Tang L, Wang L, Zhao J, Li D, Wu Z, Xiao P (2016) Morphology and properties of bio-based poly(lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites. Polym Test 54:90–97CrossRef
21.
go back to reference Wang Z, Ding X, Zhao M, Wang X, Xu G, Xiang A, Zhou H (2017) A cooling and two-step depressurization foaming approach for the preparation of modified HDPE foam with complex cellular structure. J Supercrit Fluid 125:22–30CrossRef Wang Z, Ding X, Zhao M, Wang X, Xu G, Xiang A, Zhou H (2017) A cooling and two-step depressurization foaming approach for the preparation of modified HDPE foam with complex cellular structure. J Supercrit Fluid 125:22–30CrossRef
22.
go back to reference Mihai M, Huneault MA, Favis BD, Li H (2007) Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends. Macromol Biosci 7:907–920CrossRef Mihai M, Huneault MA, Favis BD, Li H (2007) Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends. Macromol Biosci 7:907–920CrossRef
23.
go back to reference Chen P, Zhou H, Liu W, Zhang M, Du Z, Wang X (2015) The synergistic effect of zinc oxide and phenylphosphonic acid zinc salt on the crystallization behavior of poly(lactic acid). Polym Degrad Stab 122:25–35CrossRef Chen P, Zhou H, Liu W, Zhang M, Du Z, Wang X (2015) The synergistic effect of zinc oxide and phenylphosphonic acid zinc salt on the crystallization behavior of poly(lactic acid). Polym Degrad Stab 122:25–35CrossRef
24.
go back to reference Liu W, Chen P, Wang X, Wang F, Wu Y (2017) Effects of poly(butyleneadipate-co-terephthalate) as a macromolecular nucleating agent on the crystallization and foaming behavior of biodegradable poly(lactic acid). Cell Polym 36:75–96CrossRef Liu W, Chen P, Wang X, Wang F, Wu Y (2017) Effects of poly(butyleneadipate-co-terephthalate) as a macromolecular nucleating agent on the crystallization and foaming behavior of biodegradable poly(lactic acid). Cell Polym 36:75–96CrossRef
25.
go back to reference Nerkar M, Ramsay JA, Ramsay BA, Kontopoulou M (2015) Dramatic improvements in strain hardening and crystallization kinetics of PLA by simple reactive modification in the melt state. Macromol Mater Eng 299:1419–1424CrossRef Nerkar M, Ramsay JA, Ramsay BA, Kontopoulou M (2015) Dramatic improvements in strain hardening and crystallization kinetics of PLA by simple reactive modification in the melt state. Macromol Mater Eng 299:1419–1424CrossRef
26.
go back to reference Bouakaz BS, Habi A, Grohens Y, Pillin I (2017) Organomontmorillonite/graphene-PLA/PCL nanofilled blends: new strategy to enhance the functional properties of PLA/PCL blend. Appl Clay Sci 139:81–91CrossRef Bouakaz BS, Habi A, Grohens Y, Pillin I (2017) Organomontmorillonite/graphene-PLA/PCL nanofilled blends: new strategy to enhance the functional properties of PLA/PCL blend. Appl Clay Sci 139:81–91CrossRef
27.
go back to reference Zhao JC, Du FP, Zhou XP et al (2011) Thermal conductive and electrical properties of polyurethane/hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotube composites. Compos Part B Eng 42:2111–2116CrossRef Zhao JC, Du FP, Zhou XP et al (2011) Thermal conductive and electrical properties of polyurethane/hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotube composites. Compos Part B Eng 42:2111–2116CrossRef
28.
go back to reference Zhou H, Wang X, Du Z, Li H, Yu K (2015) Preparation and characterization of chain extended poly(butylene succinate) foams. Polym Eng Sci 55:988–994CrossRef Zhou H, Wang X, Du Z, Li H, Yu K (2015) Preparation and characterization of chain extended poly(butylene succinate) foams. Polym Eng Sci 55:988–994CrossRef
29.
go back to reference Wang X, Zhang Y, Liu B, Du Z, Li H (2008) Crystallization behavior and crystal morphology of linear/long chain branching polypropylene blends. Polym J 40:450–454CrossRef Wang X, Zhang Y, Liu B, Du Z, Li H (2008) Crystallization behavior and crystal morphology of linear/long chain branching polypropylene blends. Polym J 40:450–454CrossRef
30.
go back to reference Sullivan EM, Yun JO, Gerhardt RA, Wang B, Kalaitzidou K (2014) Understanding the effect of polymer crystallinity on the electrical conductivity of exfoliated graphite nanoplatelet/polylactic acid composite films. J Polym Res 21:563CrossRef Sullivan EM, Yun JO, Gerhardt RA, Wang B, Kalaitzidou K (2014) Understanding the effect of polymer crystallinity on the electrical conductivity of exfoliated graphite nanoplatelet/polylactic acid composite films. J Polym Res 21:563CrossRef
31.
go back to reference Qi F, Tang M, Chen X, Chen M, Guo G, Zhang Z (2015) Morphological structure, thermal and mechanical properties of tough poly(lactic acid) upon stereocomplexes. Eur Polym J 71:314–324CrossRef Qi F, Tang M, Chen X, Chen M, Guo G, Zhang Z (2015) Morphological structure, thermal and mechanical properties of tough poly(lactic acid) upon stereocomplexes. Eur Polym J 71:314–324CrossRef
32.
go back to reference Pantani R, Santis FD, Sorrentino A, Maio FD, Titomanlio G (2010) Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stabil 95:1148–1159CrossRef Pantani R, Santis FD, Sorrentino A, Maio FD, Titomanlio G (2010) Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stabil 95:1148–1159CrossRef
33.
go back to reference Zhao M, Ding X, Mi J, Zhou H, Wang X (2017) Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly(lactic acid). Polym Degrad Stab 146:277–286CrossRef Zhao M, Ding X, Mi J, Zhou H, Wang X (2017) Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly(lactic acid). Polym Degrad Stab 146:277–286CrossRef
34.
go back to reference Kuang TR, Mi HY, Fu DJ, Jing X, Chen BY, Mou WJ, Peng XF (2015) Fabrication of poly(lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Ind Eng Chem Res 54:758–768CrossRef Kuang TR, Mi HY, Fu DJ, Jing X, Chen BY, Mou WJ, Peng XF (2015) Fabrication of poly(lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Ind Eng Chem Res 54:758–768CrossRef
35.
go back to reference Wang X, Zhou H, Liu B, Du Z, Li H (2015) Chain extension and foaming behavior of poly(lactic acid) by functionalized multiwalled carbon nanotubes and chain extender. Adv Polym Technol 33:21444 Wang X, Zhou H, Liu B, Du Z, Li H (2015) Chain extension and foaming behavior of poly(lactic acid) by functionalized multiwalled carbon nanotubes and chain extender. Adv Polym Technol 33:21444
36.
go back to reference Chen L, Rende D, Schadler LS, Ozisik R (2013) Polymer nanocomposite foams. J Mater Chem A 1:3837–3850CrossRef Chen L, Rende D, Schadler LS, Ozisik R (2013) Polymer nanocomposite foams. J Mater Chem A 1:3837–3850CrossRef
37.
go back to reference Mihai M, Huneault MA, Favis BD (2010) Rheology and extrusion foaming of chain-branched poly(lactic acid). Polym Eng Sci 50:629–642CrossRef Mihai M, Huneault MA, Favis BD (2010) Rheology and extrusion foaming of chain-branched poly(lactic acid). Polym Eng Sci 50:629–642CrossRef
38.
go back to reference Kolodka E, Wang W, Zhu S, Hamielec AE (2004) Rheological and thermomechanical properties of long-chain-branched polyethylene prepared by slurry polymerization with metallocene catalysts. J Appl Polym Sci 92:307–316CrossRef Kolodka E, Wang W, Zhu S, Hamielec AE (2004) Rheological and thermomechanical properties of long-chain-branched polyethylene prepared by slurry polymerization with metallocene catalysts. J Appl Polym Sci 92:307–316CrossRef
39.
go back to reference Rajagopalan G, Immordino KM Jr, Gillespie JW, Mcknight SH (2000) Diffusion and reaction of epoxy and amine in polysulfone studied using fourier transform infrared spectroscopy: experimental results. Polymer 41:2591–2602CrossRef Rajagopalan G, Immordino KM Jr, Gillespie JW, Mcknight SH (2000) Diffusion and reaction of epoxy and amine in polysulfone studied using fourier transform infrared spectroscopy: experimental results. Polymer 41:2591–2602CrossRef
40.
go back to reference Liu C, Ye S, Feng J (2017) Promoting the dispersion of graphene and crystallization of poly(lactic acid) with a freezing-dried graphene/PEG masterbatch. Compos Sci Technol 144:215–222CrossRef Liu C, Ye S, Feng J (2017) Promoting the dispersion of graphene and crystallization of poly(lactic acid) with a freezing-dried graphene/PEG masterbatch. Compos Sci Technol 144:215–222CrossRef
41.
go back to reference Li K, Cui Z, Sun X, Turng LS, Huang H (2011) Effects of nanoclay on the morphology and physical properties of solid and microcellular injection molded polyactide/poly(butylenes adipate-co-terephthalate) (PLA/PBAT) nanocomposites and blends. J Biobased Mater Bioenergy 5:442–451CrossRef Li K, Cui Z, Sun X, Turng LS, Huang H (2011) Effects of nanoclay on the morphology and physical properties of solid and microcellular injection molded polyactide/poly(butylenes adipate-co-terephthalate) (PLA/PBAT) nanocomposites and blends. J Biobased Mater Bioenergy 5:442–451CrossRef
42.
go back to reference Najafi N, Heuzey MC, Carreau PJ, Therriault D, Park CB (2014) Rheological and foaming behavior of linear and branched polylactides. Rheol Acta 53:779–790CrossRef Najafi N, Heuzey MC, Carreau PJ, Therriault D, Park CB (2014) Rheological and foaming behavior of linear and branched polylactides. Rheol Acta 53:779–790CrossRef
43.
go back to reference Zhang Y, Tiwary P, Parent JS, Kontopoulou M, Park CB (2013) Crystallization and foaming of coagent-modified polypropylene: nucleation effects of cross-linked nanoparticles. Polymer 54:4814–4819CrossRef Zhang Y, Tiwary P, Parent JS, Kontopoulou M, Park CB (2013) Crystallization and foaming of coagent-modified polypropylene: nucleation effects of cross-linked nanoparticles. Polymer 54:4814–4819CrossRef
44.
go back to reference Nofar M, Guo Y, Park CB (2013) Double crystal melting peak generation for expanded polypropylene bead foam manufacturing. Ind Eng Chem Res 52:2297–2303CrossRef Nofar M, Guo Y, Park CB (2013) Double crystal melting peak generation for expanded polypropylene bead foam manufacturing. Ind Eng Chem Res 52:2297–2303CrossRef
45.
go back to reference Nofar M, Zhu W, Park CB (2012) Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Polymer 53:3341–3353CrossRef Nofar M, Zhu W, Park CB (2012) Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Polymer 53:3341–3353CrossRef
46.
go back to reference Liu H, Wang X, Zhou H, Liu W, Liu B (2015) The Preparation and characterization of branching poly(ethylene terephthalate) and its foaming behavior. Cell Polym 34:63–94CrossRef Liu H, Wang X, Zhou H, Liu W, Liu B (2015) The Preparation and characterization of branching poly(ethylene terephthalate) and its foaming behavior. Cell Polym 34:63–94CrossRef
47.
go back to reference Colton JS, Suh NP (1987) Nucleation of microcellular foam: theory and practice. Polym Eng Sci 27:500–503CrossRef Colton JS, Suh NP (1987) Nucleation of microcellular foam: theory and practice. Polym Eng Sci 27:500–503CrossRef
Metadata
Title
Transition from microcellular to nanocellular chain extended poly(lactic acid)/hydroxyl-functionalized graphene foams by supercritical CO2
Authors
Xianzeng Wang
Jianguo Mi
Hongfu Zhou
Xiangdong Wang
Publication date
12-11-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3120-8

Other articles of this Issue 5/2019

Journal of Materials Science 5/2019 Go to the issue

Premium Partners