Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 5/2017

21-07-2017

Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Sulfide Capacity

Authors: Zhiming Yan, Xuewei Lv, Zhengde Pang, Wenchao He, Dong Liang, Chenguang Bai

Published in: Metallurgical and Materials Transactions B | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of Al2O3 and Al2O3/SiO2 ratio on the sulfide capacity of the molten aluminosilicate CaO-SiO2-Al2O3-MgO-TiO2 slag system with high Al2O3 content was measured at 1773 K (1500 °C) using a metal-slag equilibration method. The sulfide capacity between silicate-based and aluminate-based slag was also compared based on the thermodynamic analysis and structural characteristics of melts. At a fixed CaO/SiO2 ratio of 1.20, the sulfide capacity decreases with increasing Al2O3 content primarily due to the decrease of free oxygen (FO) and the activity of O2–. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.79 causes a significant increase in the sulfide capacity of the slags, and a slight increase is found when the Al2O3/SiO2 ratio is more than 0.79. The effect of the substitution of silica by alumina on the sulfide capacity of the slags was not only due to an increase in the activity of basic oxides (\( a_{{{\text{O}}^{2 - } }} \)) but also to a decrease in the stability of sulfide (\( \gamma_{{{\text{S}}^{2 - } }} \)). Moreover, \( a_{{{\text{O}}^{2 - } }} \) and \( \gamma_{{{\text{S}}^{2 - } }} \) increase in a similar degree, and the weaker binding electronegativity of Al3+ with oxygen atoms results in a slight increase in the final sulfide capacity in the aluminate-based slag system with Al2O3 ↔ SiO2 substitution. Five different sulfide capacity models were employed to predict the sulfide capacity, and the iso-sulfide capacity distribution diagram based on the Young’s model was obtained in the high Al2O3 corner of the diagram.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference G.H. Park, Y.B. Kang, and J.H. Park: ISIJ Int., 2011, vol. 51, pp. 1375–82.CrossRef G.H. Park, Y.B. Kang, and J.H. Park: ISIJ Int., 2011, vol. 51, pp. 1375–82.CrossRef
3.
go back to reference M.K. Cho, J. Cheng, J.H. Park, and D.J. Min: ISIJ Int., 2010, vol. 50, pp. 215–21.CrossRef M.K. Cho, J. Cheng, J.H. Park, and D.J. Min: ISIJ Int., 2010, vol. 50, pp. 215–21.CrossRef
4.
go back to reference T. Tanaka, Y. Ogiso, M. Ueda, and J. Lee: Tetsu-to-Hagane, 2009, vol. 95, pp. A275–A281.CrossRef T. Tanaka, Y. Ogiso, M. Ueda, and J. Lee: Tetsu-to-Hagane, 2009, vol. 95, pp. A275–A281.CrossRef
5.
go back to reference J. Zhang, X. Lv, Z. Yan, Y. Qin, and C. Bai: Ironmaking & Steelmaking, 2016, vol. 5, pp. 378–84.CrossRef J. Zhang, X. Lv, Z. Yan, Y. Qin, and C. Bai: Ironmaking & Steelmaking, 2016, vol. 5, pp. 378–84.CrossRef
6.
go back to reference A. Shankar, M. Gornerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 941–47.CrossRef A. Shankar, M. Gornerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 941–47.CrossRef
7.
go back to reference Y. Taniguchi, L.J. Wang, N. Sano, and S. Seetharaman: Metall. Mater. Trans B, 2012, vol. 43B, pp. 477–84.CrossRef Y. Taniguchi, L.J. Wang, N. Sano, and S. Seetharaman: Metall. Mater. Trans B, 2012, vol. 43B, pp. 477–84.CrossRef
8.
go back to reference S.J. Jeong, T.S. Kim, and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 545–53.CrossRef S.J. Jeong, T.S. Kim, and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 545–53.CrossRef
9.
go back to reference Y. Gao, Q. Liu, and L. Bian: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 229–32.CrossRef Y. Gao, Q. Liu, and L. Bian: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 229–32.CrossRef
10.
go back to reference P. Yan, X. Guo, S. Huang, J. Dyck, M. Guo, and B. Blanpain: ISIJ Int., 2013, vol. 53, pp. 459–67.CrossRef P. Yan, X. Guo, S. Huang, J. Dyck, M. Guo, and B. Blanpain: ISIJ Int., 2013, vol. 53, pp. 459–67.CrossRef
11.
go back to reference L. Wang, M. Hayashi, K.C. Chou, and S. Seetharaman: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1338–43.CrossRef L. Wang, M. Hayashi, K.C. Chou, and S. Seetharaman: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1338–43.CrossRef
12.
go back to reference R. Moretti and G. Ottonello: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 399–410.CrossRef R. Moretti and G. Ottonello: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 399–410.CrossRef
13.
go back to reference D. Liang, Z. Yan, X. Lv, J. Zhang, and C. Bai: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 573–81.CrossRef D. Liang, Z. Yan, X. Lv, J. Zhang, and C. Bai: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 573–81.CrossRef
14.
go back to reference Z. Yan, X. Lv, D. Liang, J. Zhang, and C. Bai: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1–8. Z. Yan, X. Lv, D. Liang, J. Zhang, and C. Bai: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1–8.
15.
go back to reference M.M. Nzotta, M. Andreasson, P. Jonsson, and S. Seetharaman: Scand. J. Metall., 2000, vol. 29, pp. 177–84.CrossRef M.M. Nzotta, M. Andreasson, P. Jonsson, and S. Seetharaman: Scand. J. Metall., 2000, vol. 29, pp. 177–84.CrossRef
16.
go back to reference M.M. Nzotta, D. Sichen, and S. Seetharaman: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 909–20.CrossRef M.M. Nzotta, D. Sichen, and S. Seetharaman: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 909–20.CrossRef
17.
go back to reference M.M. Nzotta, D. Sichen, and S. Seetharaman: ISIJ Int., 1998, vol. 38, pp. 1170–79.CrossRef M.M. Nzotta, D. Sichen, and S. Seetharaman: ISIJ Int., 1998, vol. 38, pp. 1170–79.CrossRef
18.
go back to reference M.M. Nzotta, R. Nilsson, D. Sichen, and S. Seetharaman: Ironmaking & Steelmaking, 1997, vol. 24, pp. 300–05. M.M. Nzotta, R. Nilsson, D. Sichen, and S. Seetharaman: Ironmaking & Steelmaking, 1997, vol. 24, pp. 300–05.
19.
go back to reference E. Drakaliysky, N.S. Srinivasan, and L.I. Staffansson: Scand. J. Metall., 1991, vol. 20 (4), pp. 251–55. E. Drakaliysky, N.S. Srinivasan, and L.I. Staffansson: Scand. J. Metall., 1991, vol. 20 (4), pp. 251–55.
20.
go back to reference D.J. Sosinsky and I.D. Sommerville: Metall. Mater. Trans. B, 1986, vol. 17B, pp. 331–37.CrossRef D.J. Sosinsky and I.D. Sommerville: Metall. Mater. Trans. B, 1986, vol. 17B, pp. 331–37.CrossRef
21.
go back to reference R. Young, J. Duffy, G. Hassall, and Z. Xu: Ironmaking and Steelmaking, 1992, vol. 19, pp. 265–68. R. Young, J. Duffy, G. Hassall, and Z. Xu: Ironmaking and Steelmaking, 1992, vol. 19, pp. 265–68.
22.
24.
go back to reference G.G. Hatch and J. Chipman: J. Met., 1949, vol. 1, pp. 274–80. G.G. Hatch and J. Chipman: J. Met., 1949, vol. 1, pp. 274–80.
25.
26.
27.
go back to reference E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980, pp. 1–24. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980, pp. 1–24.
28.
go back to reference K. Kim, W.W. Huh, and D.J. Min: Metall. Mater. Trans. B, 2013, vol. 45B, pp. 889–96. K. Kim, W.W. Huh, and D.J. Min: Metall. Mater. Trans. B, 2013, vol. 45B, pp. 889–96.
30.
go back to reference C. Shi, X. Yang, J. Jiao, C. Li, and H. Guo: ISIJ Int., 2010, vol. 50, pp. 1362–72.CrossRef C. Shi, X. Yang, J. Jiao, C. Li, and H. Guo: ISIJ Int., 2010, vol. 50, pp. 1362–72.CrossRef
31.
go back to reference D.H. Woo and H.G. Lee: J. Am. Ceram. Soc., 2010, vol. 93, pp. 2098–2106. D.H. Woo and H.G. Lee: J. Am. Ceram. Soc., 2010, vol. 93, pp. 2098–2106.
32.
go back to reference C.J. Fincham and F.D. Richardson: Proc. R. Soc. A: Math., Phys., Eng. Sci., 1954, vol. 223, pp. 40–62.CrossRef C.J. Fincham and F.D. Richardson: Proc. R. Soc. A: Math., Phys., Eng. Sci., 1954, vol. 223, pp. 40–62.CrossRef
33.
go back to reference J.A. Duffy and M.D. Ingram: J. Am. Chem. Soc., 1971, vol. 93, pp. 6448–54.CrossRef J.A. Duffy and M.D. Ingram: J. Am. Chem. Soc., 1971, vol. 93, pp. 6448–54.CrossRef
Metadata
Title
Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Sulfide Capacity
Authors
Zhiming Yan
Xuewei Lv
Zhengde Pang
Wenchao He
Dong Liang
Chenguang Bai
Publication date
21-07-2017
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 5/2017
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-017-1031-8

Other articles of this Issue 5/2017

Metallurgical and Materials Transactions B 5/2017 Go to the issue

Premium Partners