Skip to main content
Top

2019 | OriginalPaper | Chapter

10. Transmission Eigenvalues

Authors : David Colton, Rainer Kress

Published in: Inverse Acoustic and Electromagnetic Scattering Theory

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The transmission eigenvalue problem was previously introduced in Sect. 8.​4 where it was shown to play a central role in establishing the completeness of the set of far field patterns in \(L^2(\mathbb {S}^2)\). It was then shown in Sect. 8.​6 that the set of transmission eigenvalues was either empty or formed a discrete set, thus leading to the conclusion that except possibly for a discrete set of values of the wave number k > 0, the set of far field patterns is complete in \(L^2(\mathbb {S}^2)\). In this chapter we return to the subject of transmission eigenvalues and consider further topics of interest. In particular, we begin by showing the existence of transmission eigenvalues and then deriving a monotonicity result for the first positive transmission eigenvalue. We then proceed to describe a boundary integral equation approach to the transmission eigenvalue problem, the existence of complex transmission eigenvalues in the case of a spherically stratified medium, and the inverse spectral problem for the case of such a medium. We conclude this chapter by considering a modified transmission eigenvalue problem in which the wave number k > 0 is kept fixed and the eigenparameter is now an artificial coefficient introduced through the use of a modified far field operator. Our analysis is restricted to the case of acoustic waves.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Agmon, S.: Lectures on Elliptic Boundary Value Problems. AMS Chelsea Publishing, Providence 2010.CrossRefMATH Agmon, S.: Lectures on Elliptic Boundary Value Problems. AMS Chelsea Publishing, Providence 2010.CrossRefMATH
5.
go back to reference Aktosun, T., Gintides, D., and Papanicolaou, V.: The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation. Inverse Problems 27, 115004 (2011).CrossRefMathSciNetMATH Aktosun, T., Gintides, D., and Papanicolaou, V.: The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation. Inverse Problems 27, 115004 (2011).CrossRefMathSciNetMATH
6.
go back to reference Aktosun, T., and Papanicolaou, V.: Reconstruction of the wave speed from transmission eigenvalues for the spherically symmetric variable-speed wave equation. Inverse Problems 29, 065007 (2013).CrossRefMathSciNetMATH Aktosun, T., and Papanicolaou, V.: Reconstruction of the wave speed from transmission eigenvalues for the spherically symmetric variable-speed wave equation. Inverse Problems 29, 065007 (2013).CrossRefMathSciNetMATH
21.
go back to reference Audibert, L., Cakoni, F., and Haddar, H.: New sets of eigenvalues in inverse scattering for inhomogeneous media and their determination from scattering data. Inverse Problems 33, 125001 (2017).CrossRefMathSciNetMATH Audibert, L., Cakoni, F., and Haddar, H.: New sets of eigenvalues in inverse scattering for inhomogeneous media and their determination from scattering data. Inverse Problems 33, 125001 (2017).CrossRefMathSciNetMATH
31.
37.
go back to reference Bonnet-Ben Dhia, A.S., Carvelho, C., and Chesnel, L.: On the use of perfectly matched layers at corners for scattering problems with sign-changing coefficients. J. Comput. Phys. 322, 224–247 (2016).CrossRefMathSciNetMATH Bonnet-Ben Dhia, A.S., Carvelho, C., and Chesnel, L.: On the use of perfectly matched layers at corners for scattering problems with sign-changing coefficients. J. Comput. Phys. 322, 224–247 (2016).CrossRefMathSciNetMATH
38.
go back to reference Bonnet-Ben Dhia, A.S., Chesnel, L. and Haddar, H.: On the use of T-coercivity to study the interior transmission eigenvalue problem. C.R. Math. Acad. Sci. Paris 349, 647–651 (2011).MATH Bonnet-Ben Dhia, A.S., Chesnel, L. and Haddar, H.: On the use of T-coercivity to study the interior transmission eigenvalue problem. C.R. Math. Acad. Sci. Paris 349, 647–651 (2011).MATH
52.
go back to reference Cakoni, F., Colton, D., and Gintides, D.: The interior transmission eigenvalue problem,. SIAM J. Math. Anal. 42, 2912–2921 (2010).CrossRefMathSciNetMATH Cakoni, F., Colton, D., and Gintides, D.: The interior transmission eigenvalue problem,. SIAM J. Math. Anal. 42, 2912–2921 (2010).CrossRefMathSciNetMATH
54.
go back to reference Cakoni, F., Colton, D., and Haddar, H.: On the determination of Dirichlet and transmission eigenvalues from far field data. C. R. Math. Acad. Sci. Paris, Ser. 1 348, 379–383 (2010). Cakoni, F., Colton, D., and Haddar, H.: On the determination of Dirichlet and transmission eigenvalues from far field data. C. R. Math. Acad. Sci. Paris, Ser. 1 348, 379–383 (2010).
55.
go back to reference Cakoni, F., Colton, D. and Haddar, H.: The interior transmission problem for regions with cavities. SIAM J. Math. Anal. 42, 145–162 (2010).CrossRefMathSciNetMATH Cakoni, F., Colton, D. and Haddar, H.: The interior transmission problem for regions with cavities. SIAM J. Math. Anal. 42, 145–162 (2010).CrossRefMathSciNetMATH
56.
go back to reference Cakoni, F., Colton, D., and Haddar, H.: The interior transmission eigenvalue problem for absorbing media. Inverse Problems 28, 045005 (2012).CrossRefMathSciNetMATH Cakoni, F., Colton, D., and Haddar, H.: The interior transmission eigenvalue problem for absorbing media. Inverse Problems 28, 045005 (2012).CrossRefMathSciNetMATH
57.
go back to reference Cakoni, F., Colton, D., and Haddar, H.: Inverse Scattering Theory and Transmission Eigenvalues. SIAM, Philadelphia 2016.CrossRefMATH Cakoni, F., Colton, D., and Haddar, H.: Inverse Scattering Theory and Transmission Eigenvalues. SIAM, Philadelphia 2016.CrossRefMATH
58.
go back to reference Cakoni, F., Colton, D., Meng, S., and Monk, P.: Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76, 1737–763 (2016).CrossRefMathSciNetMATH Cakoni, F., Colton, D., Meng, S., and Monk, P.: Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76, 1737–763 (2016).CrossRefMathSciNetMATH
59.
go back to reference Cakoni, F., Colton, D., and Monk, P.: The Linear Sampling Method in Inverse Electromagnetic Scattering. SIAM Publications, Philadelphia, 2011.CrossRefMATH Cakoni, F., Colton, D., and Monk, P.: The Linear Sampling Method in Inverse Electromagnetic Scattering. SIAM Publications, Philadelphia, 2011.CrossRefMATH
60.
go back to reference Cakoni, F., Colton, D., Monk, P., and Sun, J.: The inverse electromagnetic scattering problem for anisotropic media. Inverse Problems 26, 07004 (2010).MathSciNetMATH Cakoni, F., Colton, D., Monk, P., and Sun, J.: The inverse electromagnetic scattering problem for anisotropic media. Inverse Problems 26, 07004 (2010).MathSciNetMATH
62.
go back to reference Cakoni, F., Gintides, D., and Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010).CrossRefMathSciNetMATH Cakoni, F., Gintides, D., and Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010).CrossRefMathSciNetMATH
63.
go back to reference Cakoni, F., and Haddar, H.: On the existence of transmission eigenvalues in an inhomogeneous medium. Applicable Analysis 88, 475–493 (2009).CrossRefMathSciNetMATH Cakoni, F., and Haddar, H.: On the existence of transmission eigenvalues in an inhomogeneous medium. Applicable Analysis 88, 475–493 (2009).CrossRefMathSciNetMATH
64.
go back to reference Cakoni, F., Hsiao, G. C., and Wendland, W. L.: On the boundary integral equations method for a mixed boundary value problem of the biharmonic equation. Complex Var. Theory Appl. 50, 681–696 (2005).MathSciNetMATH Cakoni, F., Hsiao, G. C., and Wendland, W. L.: On the boundary integral equations method for a mixed boundary value problem of the biharmonic equation. Complex Var. Theory Appl. 50, 681–696 (2005).MathSciNetMATH
66.
go back to reference Cakoni, F., Ivanyshyn Yaman, O., Kress, R., and Le Louër, F. : A boundary integral equation for the transmission eigenvalue problem for Maxwell’s equation. Math. Meth. Appl. Math. 41, 1316–1330 (2018).MathSciNetMATH Cakoni, F., Ivanyshyn Yaman, O., Kress, R., and Le Louër, F. : A boundary integral equation for the transmission eigenvalue problem for Maxwell’s equation. Math. Meth. Appl. Math. 41, 1316–1330 (2018).MathSciNetMATH
67.
69.
go back to reference Cakoni, F. and Kress, R.: A boundary integral equation method for the transmission eigenvalue problem. Applicable Analysis 96, 23–38 (2017).CrossRefMathSciNetMATH Cakoni, F. and Kress, R.: A boundary integral equation method for the transmission eigenvalue problem. Applicable Analysis 96, 23–38 (2017).CrossRefMathSciNetMATH
70.
go back to reference Cakoni, F., Monk, P., and Selgas, V.: Analysis of the linear sampling method for imaging penetrable obstacles in the time domain. Analysis and Partial Differential Equations, to appear. Cakoni, F., Monk, P., and Selgas, V.: Analysis of the linear sampling method for imaging penetrable obstacles in the time domain. Analysis and Partial Differential Equations, to appear.
73.
go back to reference Camaño, J., Lackner, C., and Monk, P.: Electromagnetic Stekloff eigenvalues in inverse scattering. SIAM J. Math. Anal. 49, 4376–4401 (2017).CrossRefMathSciNetMATH Camaño, J., Lackner, C., and Monk, P.: Electromagnetic Stekloff eigenvalues in inverse scattering. SIAM J. Math. Anal. 49, 4376–4401 (2017).CrossRefMathSciNetMATH
82.
go back to reference Cogar, S: A modified transmission eigenvalue problem for scattering by a partially coated crack. Inverse Problems 34, 115003 (2018).CrossRefMathSciNetMATH Cogar, S: A modified transmission eigenvalue problem for scattering by a partially coated crack. Inverse Problems 34, 115003 (2018).CrossRefMathSciNetMATH
83.
go back to reference Cogar, S., Colton, D., and Leung, Y.J.: The inverse spectral problem for transmission eigenvalues. Inverse Problems 33, 055015 (2017).CrossRefMathSciNetMATH Cogar, S., Colton, D., and Leung, Y.J.: The inverse spectral problem for transmission eigenvalues. Inverse Problems 33, 055015 (2017).CrossRefMathSciNetMATH
84.
go back to reference Cogar, S., Colton, D., Meng, S., and Monk, P.: Modified transmission eigenvalues in inverse scattering theory. Inverse Problems 33, 125002 (2017).CrossRefMathSciNetMATH Cogar, S., Colton, D., Meng, S., and Monk, P.: Modified transmission eigenvalues in inverse scattering theory. Inverse Problems 33, 125002 (2017).CrossRefMathSciNetMATH
104.
go back to reference Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. SIAM Publications, Philadelphia 2013.CrossRefMATH Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. SIAM Publications, Philadelphia 2013.CrossRefMATH
106.
go back to reference Colton, D., and Leung, Y.J.: Complex eigenvalues and the inverse spectral problem for transmission eigenvalues. Inverse Problems 29, 104008 (2013).CrossRefMathSciNetMATH Colton, D., and Leung, Y.J.: Complex eigenvalues and the inverse spectral problem for transmission eigenvalues. Inverse Problems 29, 104008 (2013).CrossRefMathSciNetMATH
107.
go back to reference Colton, D., and Leung, Y.J.: On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems and Imaging 10, 369–377 (2016).CrossRefMathSciNetMATH Colton, D., and Leung, Y.J.: On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems and Imaging 10, 369–377 (2016).CrossRefMathSciNetMATH
108.
go back to reference Colton, D., and Leung, Y.J.: The existence of complex transmission eigenvalues for spherically stratified media. Applicable Analysis 96, 39–47 (2017).CrossRefMathSciNetMATH Colton, D., and Leung, Y.J.: The existence of complex transmission eigenvalues for spherically stratified media. Applicable Analysis 96, 39–47 (2017).CrossRefMathSciNetMATH
109.
go back to reference Colton, D., Leung, Y.J., and Meng, S.: Distribution of complex transmission eigenvalues for spherically stratified media. Inverse Problems 31, 035006 (2015).CrossRefMathSciNetMATH Colton, D., Leung, Y.J., and Meng, S.: Distribution of complex transmission eigenvalues for spherically stratified media. Inverse Problems 31, 035006 (2015).CrossRefMathSciNetMATH
124.
go back to reference Colton, D., Päivärinta, L., and Sylvester, J.: The interior transmission problem. Inverse Problems and Imaging 1, 13–28 (2007).CrossRefMathSciNetMATH Colton, D., Päivärinta, L., and Sylvester, J.: The interior transmission problem. Inverse Problems and Imaging 1, 13–28 (2007).CrossRefMathSciNetMATH
129.
go back to reference Cossonnière, A. and Haddar, H.: Surface integral formulation of the interior transmission problem. J. Integral Equations Applications 25, 341–376 (2013).CrossRefMathSciNetMATH Cossonnière, A. and Haddar, H.: Surface integral formulation of the interior transmission problem. J. Integral Equations Applications 25, 341–376 (2013).CrossRefMathSciNetMATH
139.
go back to reference Erdélyi, A.: Asymptotic Expansions. Dover Publications, New York 1956.MATH Erdélyi, A.: Asymptotic Expansions. Dover Publications, New York 1956.MATH
154.
go back to reference Griesmaier, R., and Harrach, B.: Monotonicity in inverse medium scattering on unbounded domains. SIAM J. Appl. Math. 78, 2533–2557 (2018).CrossRefMathSciNetMATH Griesmaier, R., and Harrach, B.: Monotonicity in inverse medium scattering on unbounded domains. SIAM J. Appl. Math. 78, 2533–2557 (2018).CrossRefMathSciNetMATH
157.
go back to reference Guo, Y., Monk, P., and Colton, D.: Toward a time domain approach to the linear sampling method. Inverse Problems 29, 095016 (2013).CrossRefMathSciNetMATH Guo, Y., Monk, P., and Colton, D.: Toward a time domain approach to the linear sampling method. Inverse Problems 29, 095016 (2013).CrossRefMathSciNetMATH
191.
go back to reference Hitrik, M., Krupchyk, K., Ola, P., and Päivärinta, L.: Transmission eigenvalues for operators with constant coefficients. SIAM J. Math. Anal. 42, 2965–2986 (2010).CrossRefMathSciNetMATH Hitrik, M., Krupchyk, K., Ola, P., and Päivärinta, L.: Transmission eigenvalues for operators with constant coefficients. SIAM J. Math. Anal. 42, 2965–2986 (2010).CrossRefMathSciNetMATH
192.
go back to reference Hitrik, M., Krupchyk, K., Ola, P., and Päivärinta, L.: Transmission eigenvalues for elliptic operators. SIAM J. Math. Anal. 43, 2630–2639 (2011).CrossRefMathSciNetMATH Hitrik, M., Krupchyk, K., Ola, P., and Päivärinta, L.: Transmission eigenvalues for elliptic operators. SIAM J. Math. Anal. 43, 2630–2639 (2011).CrossRefMathSciNetMATH
219.
go back to reference Ji, X., and Sun, J.: A multi-level method for transmission eigenvalues of anisotropic media. J. Comput. Phys. 255, 422–435 (2013).CrossRefMathSciNetMATH Ji, X., and Sun, J.: A multi-level method for transmission eigenvalues of anisotropic media. J. Comput. Phys. 255, 422–435 (2013).CrossRefMathSciNetMATH
221.
go back to reference Ji, X., Sun, J., and Xie, H.: A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput., 60, 276–294 (2014).CrossRefMathSciNetMATH Ji, X., Sun, J., and Xie, H.: A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput., 60, 276–294 (2014).CrossRefMathSciNetMATH
234.
go back to reference Kirsch, A.: Surface gradients and continuity properties for some integral operators in classical scattering theory. Math. Meth. in the Appl. Sci. 11, 789–804 (1989).CrossRefMathSciNetMATH Kirsch, A.: Surface gradients and continuity properties for some integral operators in classical scattering theory. Math. Meth. in the Appl. Sci. 11, 789–804 (1989).CrossRefMathSciNetMATH
238.
go back to reference Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. 2nd ed, Springer, Berlin 2011.CrossRefMATH Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. 2nd ed, Springer, Berlin 2011.CrossRefMATH
250.
go back to reference Kirsch, A., and Lechleiter, A.: The inside-outside duality for scattering problems by inhomogeneous media. Inverse Problems 29, 104011 (2013).CrossRefMathSciNetMATH Kirsch, A., and Lechleiter, A.: The inside-outside duality for scattering problems by inhomogeneous media. Inverse Problems 29, 104011 (2013).CrossRefMathSciNetMATH
257.
go back to reference Koosis, P.: The Logarithmic Integral I. Cambridge University Press, Cambridge 1998.MATH Koosis, P.: The Logarithmic Integral I. Cambridge University Press, Cambridge 1998.MATH
270.
285.
288.
go back to reference Lakshtanov, E., and Vainberg, B.: Weyl type bound on positive interior transmission eigenvalues. Comm. Partial Differential Equations 39, 1729–1740 (2014).CrossRefMathSciNetMATH Lakshtanov, E., and Vainberg, B.: Weyl type bound on positive interior transmission eigenvalues. Comm. Partial Differential Equations 39, 1729–1740 (2014).CrossRefMathSciNetMATH
291.
go back to reference Lax, P.D.: Functional Analysis. Wiley-Interscience, New York 2002.MATH Lax, P.D.: Functional Analysis. Wiley-Interscience, New York 2002.MATH
294.
go back to reference Lechleiter, A. and Peters, S.: The inside-outside duality for inverse scattering problems with near field data. Inverse Problems 31, 085004 (2015).CrossRefMathSciNetMATH Lechleiter, A. and Peters, S.: The inside-outside duality for inverse scattering problems with near field data. Inverse Problems 31, 085004 (2015).CrossRefMathSciNetMATH
302.
314.
go back to reference McLaughlin, J., and Polyakov, P.: On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues. J. Diff. Equations 107, 351–382 (1994).CrossRefMathSciNetMATH McLaughlin, J., and Polyakov, P.: On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues. J. Diff. Equations 107, 351–382 (1994).CrossRefMathSciNetMATH
347.
go back to reference Petrov, V., and Vodev, G.: Asymptotics of the number of the interior transmission eigenvalues. Jour. Spectral Theory 7, 1–31 (2017).CrossRefMathSciNetMATH Petrov, V., and Vodev, G.: Asymptotics of the number of the interior transmission eigenvalues. Jour. Spectral Theory 7, 1–31 (2017).CrossRefMathSciNetMATH
348.
go back to reference Pham, H., and Stefanov, P.: Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems and Imaging 8, 795–810 (2014).CrossRefMathSciNetMATH Pham, H., and Stefanov, P.: Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems and Imaging 8, 795–810 (2014).CrossRefMathSciNetMATH
367.
go back to reference Rahman, Q.J., and Schmeisser, G.: Analytic Theory of Polynomials. Clarendon Press, Oxford 2000.MATH Rahman, Q.J., and Schmeisser, G.: Analytic Theory of Polynomials. Clarendon Press, Oxford 2000.MATH
375.
go back to reference Ringrose, J.R.: Compact Non–Self Adjoint Operators. Van Nostrand Reinhold, London 1971.MATH Ringrose, J.R.: Compact Non–Self Adjoint Operators. Van Nostrand Reinhold, London 1971.MATH
377.
378.
381.
go back to reference Rundell, W., and Sacks, P.: Reconstruction techniques for classical inverse Sturm–Liouville problems. Math. Comp. 58, 161–183 (1992).CrossRefMathSciNetMATH Rundell, W., and Sacks, P.: Reconstruction techniques for classical inverse Sturm–Liouville problems. Math. Comp. 58, 161–183 (1992).CrossRefMathSciNetMATH
400.
405.
go back to reference Taylor, M.E.: Partial Differential Equations. 2nd ed, Springer, New York 2011.MATH Taylor, M.E.: Partial Differential Equations. 2nd ed, Springer, New York 2011.MATH
415.
go back to reference Vodev, G.: High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues. Analysis and Partial Differential Equations 11, 213–236 (2018).MathSciNetMATH Vodev, G.: High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues. Analysis and Partial Differential Equations 11, 213–236 (2018).MathSciNetMATH
416.
go back to reference Vodev, G.: Parabolic transmission eigenvalue free regions in the degenerate isotropic case. Asymptotic Analysis 108, 147–168 (2018).CrossRefMathSciNetMATH Vodev, G.: Parabolic transmission eigenvalue free regions in the degenerate isotropic case. Asymptotic Analysis 108, 147–168 (2018).CrossRefMathSciNetMATH
420.
432.
go back to reference Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, San Diego 2001.MATH Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, San Diego 2001.MATH
Metadata
Title
Transmission Eigenvalues
Authors
David Colton
Rainer Kress
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-30351-8_10

Premium Partner