Skip to main content
Top

2023 | OriginalPaper | Chapter

Transversely Isotropic Homogeneous Medium with Absorbing Boundary Conditions: Elastic Wave Propagation Using Spectral Element Method

Author : Poonam Saini

Published in: Frontiers in Industrial and Applied Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the complexities of elastic wave propagation in transversely isotropic media, a common scenario in fields like seismology and geophysics. It introduces the Spectral Element Method (SEM) as a more efficient alternative to the Finite Element Method (FEM) for solving these problems. The SEM, with its high accuracy and rapid convergence, is particularly advantageous in handling the intricate boundary conditions necessary for modeling wave propagation in unbounded domains. The chapter goes into detail about the mathematical formulation of the SEM, including the derivation of the weak formulation and the discretization process. It also highlights the use of absorbing boundary conditions to eliminate reflections and improve the accuracy of simulations. The results are validated through comparisons with analytical solutions, showcasing the method's effectiveness in capturing the behavior of elastic waves in transversely isotropic media. This makes the chapter a valuable resource for researchers and practitioners seeking advanced techniques for wave propagation modeling in complex geological structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Achenbach, J.: Wave Propagation in Elastic Solids, vol. 16. Elsevier (2012) Achenbach, J.: Wave Propagation in Elastic Solids, vol. 16. Elsevier (2012)
2.
go back to reference Carcione, J.M., Kosloff, D., Seriani, G.: A spectral scheme for wave propagation simulation in 3-d elastic-anisotropic media. Geophysics 57, 1593–1607 (1992)CrossRef Carcione, J.M., Kosloff, D., Seriani, G.: A spectral scheme for wave propagation simulation in 3-d elastic-anisotropic media. Geophysics 57, 1593–1607 (1992)CrossRef
3.
go back to reference Carey, G.F., Oden, J.T.: Finite Elements: An Introduction, vol. 1. Prentice Hall (1981) Carey, G.F., Oden, J.T.: Finite Elements: An Introduction, vol. 1. Prentice Hall (1981)
4.
go back to reference Cerjan, C., Kosloff, D., Kosloff, D.: A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics 50, 705–8 (1985)CrossRef Cerjan, C., Kosloff, D., Kosloff, D.: A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics 50, 705–8 (1985)CrossRef
5.
go back to reference De Basabe, J.D.: High-Order Finite Element Methods for Seismic Wave Propagation. University of Texas at Austin, Texas (2009) De Basabe, J.D.: High-Order Finite Element Methods for Seismic Wave Propagation. University of Texas at Austin, Texas (2009)
6.
go back to reference Komatitsch, D., Vilotte, J.P.: The spectral-element method: an efficient tool to simulate the seismic response of 2d and 3d geological structures. Bull. Seismol. Soc. Am. 88(2), 368–392 (1998)CrossRefMATH Komatitsch, D., Vilotte, J.P.: The spectral-element method: an efficient tool to simulate the seismic response of 2d and 3d geological structures. Bull. Seismol. Soc. Am. 88(2), 368–392 (1998)CrossRefMATH
7.
go back to reference Lubarda, V., Chen, M.: On the elastic moduli and compliances of transversely isotropic and orthotropic materials. J. Mech. Mater. Struct. 3(1), 153–171 (2008)CrossRef Lubarda, V., Chen, M.: On the elastic moduli and compliances of transversely isotropic and orthotropic materials. J. Mech. Mater. Struct. 3(1), 153–171 (2008)CrossRef
8.
go back to reference Lysmer, J., Drake, L.A.: A finite element method for seismology. Methods Comput. Phys. 11, 181–216 (1972) Lysmer, J., Drake, L.A.: A finite element method for seismology. Methods Comput. Phys. 11, 181–216 (1972)
9.
go back to reference Marfurt, K.J.: Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics 49(5), 533–549 (1984)CrossRef Marfurt, K.J.: Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics 49(5), 533–549 (1984)CrossRef
10.
go back to reference Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)CrossRefMATH Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)CrossRefMATH
11.
go back to reference Patera, A.T., Maday, Y.: Spectral element methods for the incompressible navier-stokes equations. J. Comput. Phys. 71—143 (1989) Patera, A.T., Maday, Y.: Spectral element methods for the incompressible navier-stokes equations. J. Comput. Phys. 71—143 (1989)
12.
go back to reference Payton, R.: Elastic wave propagation in transversely isotropic media. Martinus Nijhoff Publishers (1983) Payton, R.: Elastic wave propagation in transversely isotropic media. Martinus Nijhoff Publishers (1983)
13.
go back to reference Priolo, E., Seriani, G.: A numerical investigation of Chebyshev spectral element method for acoustic wave propagation. In: Proceedings 13th IMACS Conference on Computer Applications Mathematical, vol. 2, pp. 551—556. Dublin, Ireland (1991) Priolo, E., Seriani, G.: A numerical investigation of Chebyshev spectral element method for acoustic wave propagation. In: Proceedings 13th IMACS Conference on Computer Applications Mathematical, vol. 2, pp. 551—556. Dublin, Ireland (1991)
14.
go back to reference Seriani, G.: 3-d large-scale wave propagation modeling by a spectral element method on a cray t3e multiprocessor. Comp. Meth. Appl. Mech. Eng. 164, 235–247 (1998)CrossRefMATH Seriani, G.: 3-d large-scale wave propagation modeling by a spectral element method on a cray t3e multiprocessor. Comp. Meth. Appl. Mech. Eng. 164, 235–247 (1998)CrossRefMATH
15.
go back to reference Seriani, G., Priolo, E.: Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des. 16, 337–348 (1994)CrossRefMATH Seriani, G., Priolo, E.: Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des. 16, 337–348 (1994)CrossRefMATH
16.
go back to reference Seriani, G., Priolo, E., Pregarz, A.: Modelling waves in anisotropic media by a spectral element method. In: Third International Conference on Mathematical and Numerical Aspects of Wave Propagation: Society for Industrial and Applied Mathematics, pp. 289—298 (1995) Seriani, G., Priolo, E., Pregarz, A.: Modelling waves in anisotropic media by a spectral element method. In: Third International Conference on Mathematical and Numerical Aspects of Wave Propagation: Society for Industrial and Applied Mathematics, pp. 289—298 (1995)
17.
go back to reference Smith, W.D.: The application of finite element analysis to body wave propagation problems. Geophys. J. Int. 42(2), 747–768 (1975)CrossRef Smith, W.D.: The application of finite element analysis to body wave propagation problems. Geophys. J. Int. 42(2), 747–768 (1975)CrossRef
18.
go back to reference Tian, X.B., kang, I.B., Kim, G., Zhang, H.: A nonreflecting boundary condition for discrete acoustic and elastic wave equations. J. Geophys. Eng. 5, 203–209 (2008) Tian, X.B., kang, I.B., Kim, G., Zhang, H.: A nonreflecting boundary condition for discrete acoustic and elastic wave equations. J. Geophys. Eng. 5, 203–209 (2008)
Metadata
Title
Transversely Isotropic Homogeneous Medium with Absorbing Boundary Conditions: Elastic Wave Propagation Using Spectral Element Method
Author
Poonam Saini
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-7272-0_31

Premium Partners