Skip to main content
Top
Published in:

2022 | OriginalPaper | Chapter

1. Tribology—A Tool for Mechanical and Industrial Engineering

Authors : Prasanta Sahoo, Suman Kalyan Das

Published in: Mechanical and Industrial Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Human civilisation has employed the concepts of tribology from the very beginning if not in a formal way. It started with solving problems related to friction and lubrication in the activities of day-to-day life. Gradually with the interests of some bright minds, tribology began to take the form of a specific subject and humankind began to appreciate its potential of transforming their lives. Industrial revolutions definitely played a part in the development of tribology and benefits of same has been reciprocated back to the industries. The knowledge of tribology has now got an additional facet due to the present problems of energy conservation and climate change. Obviously, tribology has yet to offer lot more considering these aspects and the true potential of it can only be revealed by proper and wide application of it.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khonsari M, Booser E (2008) Tribology—friction, wear, and lubrication, in applied tribology. pp 1–21 Khonsari M, Booser E (2008) Tribology—friction, wear, and lubrication, in applied tribology. pp 1–21
2.
go back to reference Vakis AI et al (2018) Modeling and simulation in tribology across scales: an overview. Tribol Int 125:169–199CrossRef Vakis AI et al (2018) Modeling and simulation in tribology across scales: an overview. Tribol Int 125:169–199CrossRef
3.
go back to reference Sahoo P (2005) Engineering tribology. Prentice-Hall of India Pvt. Ltd., New Delhi Sahoo P (2005) Engineering tribology. Prentice-Hall of India Pvt. Ltd., New Delhi
4.
go back to reference Fall A et al (2014) Sliding friction on wet and dry sand. Phys Rev Lett 112(17):175502 Fall A et al (2014) Sliding friction on wet and dry sand. Phys Rev Lett 112(17):175502
5.
go back to reference Echávarri J, de la Guerra E, Chacón E (2015) Tribology: a historical overview of the relation between theory and application. In: Pisano R (ed) A bridge between conceptual frameworks: sciences, society and technology studies. Springer Netherlands, Dordrecht, pp 135–154 Echávarri J, de la Guerra E, Chacón E (2015) Tribology: a historical overview of the relation between theory and application. In: Pisano R (ed) A bridge between conceptual frameworks: sciences, society and technology studies. Springer Netherlands, Dordrecht, pp 135–154
6.
go back to reference Betancourt-Parra S (2021) Leonardo da Vinci's tribological intuitions. Tribology Int 153:106664 Betancourt-Parra S (2021) Leonardo da Vinci's tribological intuitions. Tribology Int 153:106664
7.
go back to reference Ciulli E (2019) Tribology and industry: from the origins to 4.0. Front Mech Eng 5(55) Ciulli E (2019) Tribology and industry: from the origins to 4.0. Front Mech Eng 5(55)
8.
go back to reference Reynolds O (1886) On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Phil Trans Royal Soc London Reynolds O (1886) On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Phil Trans Royal Soc London
9.
go back to reference Popov VL, JAT Gray (2014) Prandtl-Tomlinson model: a simple model which made history, in the history of theoretical. In: Stein E (ed) Material and computational mechanics—mathematics meets mechanics and engineering. Springer Berlin Heidelberg, Berlin, Heidelberg. pp 153–168 Popov VL, JAT Gray (2014) Prandtl-Tomlinson model: a simple model which made history, in the history of theoretical. In: Stein E (ed) Material and computational mechanics—mathematics meets mechanics and engineering. Springer Berlin Heidelberg, Berlin, Heidelberg. pp 153–168
10.
go back to reference Zmitrowicz A (2006) Wear patterns and laws of wear-a review. J Theor Appl Mech 44:219–253 Zmitrowicz A (2006) Wear patterns and laws of wear-a review. J Theor Appl Mech 44:219–253
11.
go back to reference Bailey AI, Courtney-Pratt JS (1955) The area of real contact and the shear strength of monomolecular layers of a boundary lubricant. In: Proceedings of the royal society of London. Series A, mathematical and physical sciences, vol 227, no 1171, pp 500–515 Bailey AI, Courtney-Pratt JS (1955) The area of real contact and the shear strength of monomolecular layers of a boundary lubricant. In: Proceedings of the royal society of London. Series A, mathematical and physical sciences, vol 227, no 1171, pp 500–515
12.
go back to reference Greenwood JA, Williamson JBP, Bowden FP (1966) Contact of nominally flat surfaces. In: Proceedings of the royal society of London. Series A. Mathematical and physical sciences, vol. 295, no 1442, pp 300–319 Greenwood JA, Williamson JBP, Bowden FP (1966) Contact of nominally flat surfaces. In: Proceedings of the royal society of London. Series A. Mathematical and physical sciences, vol. 295, no 1442, pp 300–319
13.
go back to reference Tabor D, Winterton RHS (1968) Surface forces: direct measurement of normal and retarded van der waals forces. Nature 219(5159):1120–1121CrossRef Tabor D, Winterton RHS (1968) Surface forces: direct measurement of normal and retarded van der waals forces. Nature 219(5159):1120–1121CrossRef
14.
go back to reference Tabor D (1977) Surface forces and surface interactions. J Colloid Interface Sci 58(1):2–13CrossRef Tabor D (1977) Surface forces and surface interactions. J Colloid Interface Sci 58(1):2–13CrossRef
15.
go back to reference Briscoe BJ, Evans DCB, Tabor D (1982) The shear properties of Langmuir—Blodgett layers. In: Proceedings of the royal society of London. A. Mathematical and physical sciences, vol 380, no 1779, pp 389–407 Briscoe BJ, Evans DCB, Tabor D (1982) The shear properties of Langmuir—Blodgett layers. In: Proceedings of the royal society of London. A. Mathematical and physical sciences, vol 380, no 1779, pp 389–407
16.
go back to reference Hamrock BJ, Dowson D (1981) Ball bearing lubrication—the elatohydrodynamics of elliptical contacts. Wiley-Interscience, New York: NY Hamrock BJ, Dowson D (1981) Ball bearing lubrication—the elatohydrodynamics of elliptical contacts. Wiley-Interscience, New York: NY
17.
go back to reference Hirano M, Shinjo K (1990) Atomistic locking and friction. Phys Rev B 41(17):11837–11851CrossRef Hirano M, Shinjo K (1990) Atomistic locking and friction. Phys Rev B 41(17):11837–11851CrossRef
18.
go back to reference WA G (1962) Gas Film Lubricaation. New York, NY Wiley WA G (1962) Gas Film Lubricaation. New York, NY Wiley
19.
go back to reference Meng Y et al (2020) A review of recent advances in tribology. Friction 8(2):221–300CrossRef Meng Y et al (2020) A review of recent advances in tribology. Friction 8(2):221–300CrossRef
20.
go back to reference Carpick R et al (2016) The tribology opportunities study: can tribology save a quad? Tribology & lubrication technology. Park Ridge 72(5):44–45 Carpick R et al (2016) The tribology opportunities study: can tribology save a quad? Tribology & lubrication technology. Park Ridge 72(5):44–45
21.
go back to reference Zhou Y, Qu J (2017) Ionic liquids as lubricant additives: a review. ACS Appl Mater Interfaces 9(4):3209–3222CrossRef Zhou Y, Qu J (2017) Ionic liquids as lubricant additives: a review. ACS Appl Mater Interfaces 9(4):3209–3222CrossRef
22.
go back to reference Pirro DM, Webster M, Daschner E (2016) Lubrication fundamentals: third edition, revised and expanded, (3rd ed). Boca Raton: CRC Press Pirro DM, Webster M, Daschner E (2016) Lubrication fundamentals: third edition, revised and expanded, (3rd ed). Boca Raton: CRC Press
23.
go back to reference D, P., Lubricant and lubricant additives. In: Patnaik A, Singh T, Kukshal V (ed) Tribology in materials and manufacturing—wear, friction and lubrication. Intechopen D, P., Lubricant and lubricant additives. In: Patnaik A, Singh T, Kukshal V (ed) Tribology in materials and manufacturing—wear, friction and lubrication. Intechopen
24.
go back to reference Xiao H, Liu S (2017) 2D nanomaterials as lubricant additive: A review. Mater Des 135:319–332CrossRef Xiao H, Liu S (2017) 2D nanomaterials as lubricant additive: A review. Mater Des 135:319–332CrossRef
25.
go back to reference Zhao J et al (2021) Nanolubricant additives: a review. Friction 9(5):891–917CrossRef Zhao J et al (2021) Nanolubricant additives: a review. Friction 9(5):891–917CrossRef
26.
go back to reference Hilton MR et al (1992) Structural and tribological studies of MoS2 solid lubricant films having tailored metal-multilayer nanostructures. Surf Coat Technol 53(1):13–23CrossRef Hilton MR et al (1992) Structural and tribological studies of MoS2 solid lubricant films having tailored metal-multilayer nanostructures. Surf Coat Technol 53(1):13–23CrossRef
27.
go back to reference He X et al (2014) α-Zirconium phosphate nanoplatelets as lubricant additives. Colloids Surf A 452:32–38CrossRef He X et al (2014) α-Zirconium phosphate nanoplatelets as lubricant additives. Colloids Surf A 452:32–38CrossRef
28.
go back to reference Yang J et al (2017) Synthesis of the liquid-like graphene with excellent tribological properties. Tribol Int 105:118–124CrossRef Yang J et al (2017) Synthesis of the liquid-like graphene with excellent tribological properties. Tribol Int 105:118–124CrossRef
29.
go back to reference Ye C et al (2001) Room-temperature ionic liquids: a novel versatile lubricant. Chem Commun 21:2244–2245CrossRef Ye C et al (2001) Room-temperature ionic liquids: a novel versatile lubricant. Chem Commun 21:2244–2245CrossRef
30.
go back to reference Qu J et al (2012) Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl Mater Interfaces 4(2):997–1002CrossRef Qu J et al (2012) Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl Mater Interfaces 4(2):997–1002CrossRef
31.
go back to reference Hutchings I, Shipway P (2017) 7—Surface engineering. In: Hutchings I, Shipway P (ed) Tribology, 2nd edn. Butterworth-Heinemann, pp 237–281 Hutchings I, Shipway P (2017) 7—Surface engineering. In: Hutchings I, Shipway P (ed) Tribology, 2nd edn. Butterworth-Heinemann, pp 237–281
32.
go back to reference Shah R et al (2021) High temperature tribology under linear oscillation motion. Lubricants 9(1):5CrossRef Shah R et al (2021) High temperature tribology under linear oscillation motion. Lubricants 9(1):5CrossRef
33.
go back to reference Zhu S et al (2019) High temperature solid-lubricating materials: a review. Tribol Int 133:206–223CrossRef Zhu S et al (2019) High temperature solid-lubricating materials: a review. Tribol Int 133:206–223CrossRef
34.
go back to reference Ducobu F et al (2015) Finite element prediction of the tool wear influence in Ti6Al4V machining. Procedia CIRP 31:124–129CrossRef Ducobu F et al (2015) Finite element prediction of the tool wear influence in Ti6Al4V machining. Procedia CIRP 31:124–129CrossRef
35.
go back to reference Perazzo F et al (2019) Numerical modeling of the pattern and wear rate on a structural steel plate using DEM. Miner Eng 137:290–302CrossRef Perazzo F et al (2019) Numerical modeling of the pattern and wear rate on a structural steel plate using DEM. Miner Eng 137:290–302CrossRef
36.
go back to reference Rojas E, Vergara V, Soto R (2019) Case study: discrete element modeling of wear in mining hoppers. Wear 430–431:120–125CrossRef Rojas E, Vergara V, Soto R (2019) Case study: discrete element modeling of wear in mining hoppers. Wear 430–431:120–125CrossRef
37.
go back to reference Zhang YB et al (2018) Finite element simulation of the influence of fretting wear on fretting crack initiation in press-fitted shaft under rotating bending. Wear 400–401:177–183CrossRef Zhang YB et al (2018) Finite element simulation of the influence of fretting wear on fretting crack initiation in press-fitted shaft under rotating bending. Wear 400–401:177–183CrossRef
38.
go back to reference Krop S, Meijer HEH, van Breemen LCA (2016) Finite element modeling and experimental validation of single-asperity sliding friction of diamond against reinforced and non-filled polycarbonate. Wear 356–357:77–85CrossRef Krop S, Meijer HEH, van Breemen LCA (2016) Finite element modeling and experimental validation of single-asperity sliding friction of diamond against reinforced and non-filled polycarbonate. Wear 356–357:77–85CrossRef
39.
go back to reference Lian Q et al (2020) Thermo-mechanical coupled finite element analysis of rolling contact fatigue and wear properties of a rail steel under different slip ratios. Tribology Int 141:105943 Lian Q et al (2020) Thermo-mechanical coupled finite element analysis of rolling contact fatigue and wear properties of a rail steel under different slip ratios. Tribology Int 141:105943
40.
go back to reference Ud Din I et al (2019) Finite element modeling of indentation and adhesive wear in sliding of carbon fiber reinforced thermoplastic polymer against metallic counterpart. Tribol Int 135:200–212CrossRef Ud Din I et al (2019) Finite element modeling of indentation and adhesive wear in sliding of carbon fiber reinforced thermoplastic polymer against metallic counterpart. Tribol Int 135:200–212CrossRef
41.
go back to reference Kurdi A et al (2020) Practice of simulation and life cycle assessment in tribology-a review. Mater (Basel, Switzerland) 13(16):3489CrossRef Kurdi A et al (2020) Practice of simulation and life cycle assessment in tribology-a review. Mater (Basel, Switzerland) 13(16):3489CrossRef
42.
go back to reference Schall JD et al (2007) 5—Molecular dynamics simulations of tribology. In: Erdemir A, Martin J-M (eds) Superlubricity. Elsevier Science B.V, Amsterdam, pp 79–102CrossRef Schall JD et al (2007) 5—Molecular dynamics simulations of tribology. In: Erdemir A, Martin J-M (eds) Superlubricity. Elsevier Science B.V, Amsterdam, pp 79–102CrossRef
43.
go back to reference Hu C et al (2015) Molecular dynamics simulation on the tribology properties of two hard nanoparticles (diamond and silicon dioxide) confined by two iron blocks. Tribol Int 90:297–305CrossRef Hu C et al (2015) Molecular dynamics simulation on the tribology properties of two hard nanoparticles (diamond and silicon dioxide) confined by two iron blocks. Tribol Int 90:297–305CrossRef
44.
go back to reference Simpson JT, Hunter SR, Aytug T (2015) Superhydrophobic materials and coatings: a review. Rep Progress Phys 78(8):086501 Simpson JT, Hunter SR, Aytug T (2015) Superhydrophobic materials and coatings: a review. Rep Progress Phys 78(8):086501
45.
go back to reference Bechert DW, Bruse M, Hage W (2000) Experiments with three-dimensional riblets as an idealized model of shark skin. Exp Fluids 28(5):403–412CrossRef Bechert DW, Bruse M, Hage W (2000) Experiments with three-dimensional riblets as an idealized model of shark skin. Exp Fluids 28(5):403–412CrossRef
46.
go back to reference Abdel-Aal HA (2016) Functional surfaces for tribological applications: inspiration and design. Surface Topogr Metrol Prop 4(4):043001 Abdel-Aal HA (2016) Functional surfaces for tribological applications: inspiration and design. Surface Topogr Metrol Prop 4(4):043001
47.
go back to reference Gao H et al (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37(2):275–285CrossRef Gao H et al (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37(2):275–285CrossRef
48.
go back to reference Ruibal R, Ernst V (1965) The structure of the digital setae of lizards. J Morphol 117(3):271–293CrossRef Ruibal R, Ernst V (1965) The structure of the digital setae of lizards. J Morphol 117(3):271–293CrossRef
49.
go back to reference Perry SS, Tysoe WT (2005) Frontiers of fundamental tribological research. Tribol Lett 19(3):10CrossRef Perry SS, Tysoe WT (2005) Frontiers of fundamental tribological research. Tribol Lett 19(3):10CrossRef
50.
go back to reference Li S, Wei C, Wang Y (2021) Fabrication and service of all-ceramic ball bearings for extreme conditions applications. In: IOP conference series: materials science and engineering, vol 1009, p 012032 Li S, Wei C, Wang Y (2021) Fabrication and service of all-ceramic ball bearings for extreme conditions applications. In: IOP conference series: materials science and engineering, vol 1009, p 012032
51.
go back to reference Sahoo P, Das SK, Paulo Davim J (2019) 1—Tribology of materials for biomedical applications. In: Davim JP (ed) Mechanical behaviour of biomaterials. Woodhead Publishing, pp 1–45 Sahoo P, Das SK, Paulo Davim J (2019) 1—Tribology of materials for biomedical applications. In: Davim JP (ed) Mechanical behaviour of biomaterials. Woodhead Publishing, pp 1–45
52.
go back to reference Holmberg K, Erdemir A (2019) The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol Int 135:389–396CrossRef Holmberg K, Erdemir A (2019) The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol Int 135:389–396CrossRef
53.
go back to reference Wood RJK et al (1929) Tribological design constraints of marine renewable energy systems. Phil Trans Royal Soc A: Math Phys Eng Sci 2010(368):4807–4827 Wood RJK et al (1929) Tribological design constraints of marine renewable energy systems. Phil Trans Royal Soc A: Math Phys Eng Sci 2010(368):4807–4827
54.
go back to reference Sugimura J, Sasaki S (2011) Hydrogen tribology for future energy. Tribology Online 6(2):i–iCrossRef Sugimura J, Sasaki S (2011) Hydrogen tribology for future energy. Tribology Online 6(2):i–iCrossRef
55.
go back to reference Salazar JG, Santos IF (2017) Active tilting-pad journal bearings supporting flexible rotors: Part I—the hybrid lubrication. Tribol Int 107:94–105CrossRef Salazar JG, Santos IF (2017) Active tilting-pad journal bearings supporting flexible rotors: Part I—the hybrid lubrication. Tribol Int 107:94–105CrossRef
56.
go back to reference Phulé PP (2001) Magnetorheological (MR) fluids: principles and applications. Smart Mater Bull 2001(2):7–10CrossRef Phulé PP (2001) Magnetorheological (MR) fluids: principles and applications. Smart Mater Bull 2001(2):7–10CrossRef
Metadata
Title
Tribology—A Tool for Mechanical and Industrial Engineering
Authors
Prasanta Sahoo
Suman Kalyan Das
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-90487-6_1

Premium Partners