Skip to main content
Top

2020 | OriginalPaper | Chapter

Triggering Proactive Business Process Adaptations via Online Reinforcement Learning

Authors : Andreas Metzger, Tristan Kley, Alexander Palm

Published in: Business Process Management

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Proactive process adaptation can prevent and mitigate upcoming problems during process execution by using predictions about how an ongoing case will unfold. There is an important trade-off with respect to these predictions: Earlier predictions leave more time for adaptations than later predictions, but earlier predictions typically exhibit a lower accuracy than later predictions, because not much information about the ongoing case is available. An emerging solution to address this trade-off is to continuously generate predictions and only trigger proactive adaptations when prediction reliability is greater than a predefined threshold. However, a good threshold is not known a priori. One solution is to empirically determine the threshold using a subset of the training data. While an empirical threshold may be optimal for the training data used and the given cost structure, such a threshold may not be optimal over time due to non-stationarity of process environments, data, and cost structures. Here, we use online reinforcement learning as an alternative solution to learn when to trigger proactive process adaptations based on the predictions and their reliability at run time. Experimental results for three public data sets indicate that our approach may on average lead to 12.2% lower process execution costs compared to empirical thresholding.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Hyper-parameters are used to configure the machine learning algorithms and thereby control the learning process.
 
Literature
1.
go back to reference Bosnic, Z., Kononenko, I.: Comparison of approaches for estimating reliability of individual regression predictions. Data Knowl. Eng. 67(3), 504–516 (2008)CrossRef Bosnic, Z., Kononenko, I.: Comparison of approaches for estimating reliability of individual regression predictions. Data Knowl. Eng. 67(3), 504–516 (2008)CrossRef
3.
go back to reference Conforti, R., de Leoni, M., Rosa, M.L., van der Aalst, W.M.P., ter Hofstede, A.H.M.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69, 1–19 (2015)CrossRef Conforti, R., de Leoni, M., Rosa, M.L., van der Aalst, W.M.P., ter Hofstede, A.H.M.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69, 1–19 (2015)CrossRef
4.
go back to reference D’Angelo, M., et al.: On learning in collective self-adaptive systems: state of practice and a 3D framework. In: Litoiu, M., Clarke, S., Tei, K. (eds.) 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE 2019, Montreal, QC, Canada, pp. 13–24. ACM (2019) D’Angelo, M., et al.: On learning in collective self-adaptive systems: state of practice and a 3D framework. In: Litoiu, M., Clarke, S., Tei, K. (eds.) 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE 2019, Montreal, QC, Canada, pp. 13–24. ACM (2019)
5.
go back to reference Dewey, D.: Reinforcement learning and the reward engineering principle. In: 2014 AAAI Spring Symposia, Stanford University, Palo Alto, California, USA, 24–26 March 2014. AAAI Press (2014) Dewey, D.: Reinforcement learning and the reward engineering principle. In: 2014 AAAI Spring Symposia, Stanford University, Palo Alto, California, USA, 24–26 March 2014. AAAI Press (2014)
7.
go back to reference Evermann, J., Rehse, J., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)CrossRef Evermann, J., Rehse, J., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)CrossRef
8.
go back to reference Fahrenkrog-Petersen, S.A., et al.: Fire now, fire later: alarm-based systems for prescriptive process monitoring. CoRR abs/1905.09568 (2019) Fahrenkrog-Petersen, S.A., et al.: Fire now, fire later: alarm-based systems for prescriptive process monitoring. CoRR abs/1905.09568 (2019)
9.
go back to reference Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_15CrossRef Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-65000-5_​15CrossRef
10.
go back to reference Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)MATH Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)MATH
11.
go back to reference Huang, Z., van der Aalst, W.M.P., Lu, X., Duan, H.: Reinforcement learning based resource allocation in business process management. Data Knowl. Eng. 70(1), 127–145 (2011)CrossRef Huang, Z., van der Aalst, W.M.P., Lu, X., Duan, H.: Reinforcement learning based resource allocation in business process management. Data Knowl. Eng. 70(1), 127–145 (2011)CrossRef
12.
go back to reference Kang, B., Kim, D., Kang, S.: Real-time business process monitoring method for prediction of abnormal termination using KNNI-based LOF prediction. Expert Syst. Appl. 39(5), 6061–6068 (2012)CrossRef Kang, B., Kim, D., Kang, S.: Real-time business process monitoring method for prediction of abnormal termination using KNNI-based LOF prediction. Expert Syst. Appl. 39(5), 6061–6068 (2012)CrossRef
13.
14.
go back to reference Liu, N., Huang, J., Cui, L.: A framework for online process concept drift detection from event streams. In: 2018 International Conference on Services Computing, SCC 2018, San Francisco, CA, USA, pp. 105–112. IEEE (2018) Liu, N., Huang, J., Cui, L.: A framework for online process concept drift detection from event streams. In: 2018 International Conference on Services Computing, SCC 2018, San Francisco, CA, USA, pp. 105–112. IEEE (2018)
16.
go back to reference Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2018)CrossRef Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2018)CrossRef
17.
go back to reference Mehdiyev, N., Evermann, J., Fettke, P.: A multi-stage deep learning approach for business process event prediction. In: Loucopoulos, P., Manolopoulos, Y., Pastor, O., Theodoulidis, B., Zdravkovic, J. (eds.) 19th Conference on Business Informatics, CBI 2017, Thessaloniki, Greece, pp. 119–128. IEEE Computer Society (2017) Mehdiyev, N., Evermann, J., Fettke, P.: A multi-stage deep learning approach for business process event prediction. In: Loucopoulos, P., Manolopoulos, Y., Pastor, O., Theodoulidis, B., Zdravkovic, J. (eds.) 19th Conference on Business Informatics, CBI 2017, Thessaloniki, Greece, pp. 119–128. IEEE Computer Society (2017)
20.
go back to reference Metzger, A., Franke, J., Jansen, T.: Ensemble deep learning for proactive terminal process management at duisport. In: vom Brocke, J., Mendling, J., Rosemann, M. (eds.) Business Process Management Cases, vol. 2. Springer, Heidelberg (2020) Metzger, A., Franke, J., Jansen, T.: Ensemble deep learning for proactive terminal process management at duisport. In: vom Brocke, J., Mendling, J., Rosemann, M. (eds.) Business Process Management Cases, vol. 2. Springer, Heidelberg (2020)
21.
go back to reference Metzger, A., Neubauer, A.: Considering non-sequential control flows for process prediction with recurrent neural networks. In: 44th Euromicro Conference on Software Engineering and Advanced Applications, SEAA, Prague, Czech Republic, pp. 268–272. IEEE Computer Society (2018) Metzger, A., Neubauer, A.: Considering non-sequential control flows for process prediction with recurrent neural networks. In: 44th Euromicro Conference on Software Engineering and Advanced Applications, SEAA, Prague, Czech Republic, pp. 268–272. IEEE Computer Society (2018)
23.
go back to reference Nachum, O., Norouzi, M., Xu, K., Schuurmans, D.: Bridging the gap between value and policy based reinforcement learning. In: Advances in Neural Information Processing Systems 12 (NIPS 2017), pp. 2772–2782 (2017) Nachum, O., Norouzi, M., Xu, K., Schuurmans, D.: Bridging the gap between value and policy based reinforcement learning. In: Advances in Neural Information Processing Systems 12 (NIPS 2017), pp. 2772–2782 (2017)
24.
go back to reference Nunes, V.T., Santoro, F.M., Werner, C.M.L., Ralha, C.G.: Real-time process adaptation: a context-aware replanning approach. IEEE Trans. Syst. Man Cybern. Syst. 48(1), 99–118 (2018)CrossRef Nunes, V.T., Santoro, F.M., Werner, C.M.L., Ralha, C.G.: Real-time process adaptation: a context-aware replanning approach. IEEE Trans. Syst. Man Cybern. Syst. 48(1), 99–118 (2018)CrossRef
26.
go back to reference Park, G., Song, M.: Prediction-based resource allocation using LSTM and minimum cost and maximum flow algorithm. In: International Conference on Process Mining (ICPM 2019), Aachen, Germany, pp. 121–128 (2019) Park, G., Song, M.: Prediction-based resource allocation using LSTM and minimum cost and maximum flow algorithm. In: International Conference on Process Mining (ICPM 2019), Aachen, Germany, pp. 121–128 (2019)
27.
go back to reference Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)CrossRef Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)CrossRef
29.
go back to reference Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. CoRR abs/1707.06347 (2017) Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. CoRR abs/1707.06347 (2017)
31.
go back to reference Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)MATH Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)MATH
32.
go back to reference Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems 12 (NIPS 1999), pp. 1057–1063 (2000) Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems 12 (NIPS 1999), pp. 1057–1063 (2000)
35.
go back to reference Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. TKDD 13(2), 17:1–17:57 (2019) Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. TKDD 13(2), 17:1–17:57 (2019)
37.
go back to reference Weber, B., Sadiq, S.W., Reichert, M.: Beyond rigidity - dynamic process lifecycle support. Comput. Sci. - R&D 23(2), 47–65 (2009) Weber, B., Sadiq, S.W., Reichert, M.: Beyond rigidity - dynamic process lifecycle support. Comput. Sci. - R&D 23(2), 47–65 (2009)
38.
go back to reference Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC, Boca Raton (2012)CrossRef Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC, Boca Raton (2012)CrossRef
Metadata
Title
Triggering Proactive Business Process Adaptations via Online Reinforcement Learning
Authors
Andreas Metzger
Tristan Kley
Alexander Palm
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-58666-9_16