Skip to main content
Top

2024 | OriginalPaper | Chapter

Triples, Quadruples and Quintuples Which are D(n)-Sets for Several n’s

Author : Andrej Dujella

Published in: Class Groups of Number Fields and Related Topics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For an integer n, a set of distinct nonzero integers \(\{a_1, a_2, ... , a_m\}\) such that \(a_i a_j + n\) is a perfect square for all \(1 \le i < j \le m\), is called a Diophantine m-tuple with the property D(n) or simply a D(n)-set. D(1)-sets are also called Diophantine m-tuples. The first Diophantine quadruple, the set \(\{1,3,8,120\}\) was found by Fermat. He, Togbé and Ziegler proved in 2019 that there does not exist a Diophantine quintuple. On the other hand, it is known that there exist infinitely many rational Diophantine sextuples. When considering D(n)-sets, usually an integer n is fixed in advance. However, we may ask if a set can have the property D(n) for several different n’s. For example, \(\{8,21,55\}\) is a D(1)-triple and D(4321)-triple. In joint work with Adžaga, Kreso and Tadić, we presented several families of Diophantine triples, which are D(n)-sets for two distinct n’s with \(n \ne 1\). In joint work with Petričević we proved that there are infinitely many (essentially different) quadruples which are simultaneously \(D(n_1)\)-quadruples and \(D(n_2)\)-quadruples with \(n_1 \ne n_2\). Moreover, the elements in some of these quadruples are squares, so they are also D(0)-quadruples. E.g. \(\{54^2, 100^2, 168^2, 364^2\}\) is a \(D(8190^2)\), \(D(40320^2)\) and D(0)-quadruple. In recent joint work with Kazalicki and Petričević, we considered D(n)-quintuples with square elements (so they are also D(0)-quintuples). We proved that there are infinitely many such quintuples. One example is a \(D(480480^2)\)-quintuple \(\{225^2, 286^2, 819^2, 1408^2, 2548^2\}\). In this survey paper, we describe methods used in constructions of mentioned triples, quadruples and quintuples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adžaga, N., Dujella, A., Kreso, D., Tadić, P.: Triples which are \(D(n)\)-sets for several \(n\)’s. J. Number Theory 184, 330–341 (2018) Adžaga, N., Dujella, A., Kreso, D., Tadić, P.: Triples which are \(D(n)\)-sets for several \(n\)’s. J. Number Theory 184, 330–341 (2018)
2.
go back to reference Adžaga, N., Dujella, A., Kreso, D., Tadić, P.: On Diophantine m-tuples and \(D(n)\)-sets. RIMS Kokyuroku 2092, 130–137 (2018) Adžaga, N., Dujella, A., Kreso, D., Tadić, P.: On Diophantine m-tuples and \(D(n)\)-sets. RIMS Kokyuroku 2092, 130–137 (2018)
3.
go back to reference Arkin, J., Hoggatt, V.E., Strauss, E.G.: On Euler’s solution of a problem of Diophantus. Fibonacci Quart. 17, 333–339 (1979)MathSciNetCrossRef Arkin, J., Hoggatt, V.E., Strauss, E.G.: On Euler’s solution of a problem of Diophantus. Fibonacci Quart. 17, 333–339 (1979)MathSciNetCrossRef
4.
go back to reference Baker, A., Davenport, H.: The equations \(3x^2 - 2 = y^2\) and \(8x^2 - 7 = z^2\), Quart. J. Math. Oxford Ser. 20(2), 129–137 (1969) Baker, A., Davenport, H.: The equations \(3x^2 - 2 = y^2\) and \(8x^2 - 7 = z^2\), Quart. J. Math. Oxford Ser. 20(2), 129–137 (1969)
5.
go back to reference Bliznac Trebješanin, M., Filipin, A.: Nonexistence of \(D(4)\)-quintuples. J. Number Theory 194, 170–217 (2019) Bliznac Trebješanin, M., Filipin, A.: Nonexistence of \(D(4)\)-quintuples. J. Number Theory 194, 170–217 (2019)
6.
go back to reference Bonciocat, N.C., Cipu, M., Mignotte, M.: There is no Diophantine \(D(-1)\)-quadruple. J. Lond. Math. Soc. 105, 63–99 (2022) Bonciocat, N.C., Cipu, M., Mignotte, M.: There is no Diophantine \(D(-1)\)-quadruple. J. Lond. Math. Soc. 105, 63–99 (2022)
7.
go back to reference Brown, E.: Sets in which \(xy + k\) is always a square. Math. Comput. 45, 613–620 (1985) Brown, E.: Sets in which \(xy + k\) is always a square. Math. Comput. 45, 613–620 (1985)
8.
go back to reference Cipu, M., Fujita, Y., Miyazaki, T.: On the number of extensions of a Diophantine triple. Int. J. Number Theory 14, 899–917 (2018)MathSciNetCrossRef Cipu, M., Fujita, Y., Miyazaki, T.: On the number of extensions of a Diophantine triple. Int. J. Number Theory 14, 899–917 (2018)MathSciNetCrossRef
9.
go back to reference Denton, A.D.: A holiday brain teaser, The Sunday Times, 4th August 1957, 18th August 1957 Denton, A.D.: A holiday brain teaser, The Sunday Times, 4th August 1957, 18th August 1957
10.
go back to reference Dražić, G.: Rational \(D(q)\)-quintuples. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 116, Article 9 (2022) Dražić, G.: Rational \(D(q)\)-quintuples. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 116, Article 9 (2022)
12.
go back to reference Dujella, A.: There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566, 183–214 (2004)MathSciNet Dujella, A.: There are only finitely many Diophantine quintuples. J. Reine Angew. Math. 566, 183–214 (2004)MathSciNet
13.
go back to reference Dujella, A.: What is ... a Diophantine \(m\)-tuple? Notices Am. Math. Soc. 63, 772–774 (2016) Dujella, A.: What is ... a Diophantine \(m\)-tuple? Notices Am. Math. Soc. 63, 772–774 (2016)
14.
go back to reference Dujella, A.: Number Theory, Školska knjiga, Zagreb, 2021, Sections 14.6, 16.7 Dujella, A.: Number Theory, Školska knjiga, Zagreb, 2021, Sections 14.6, 16.7
16.
17.
go back to reference Dujella, A., Kazalicki, M.: More on Diophantine sextuples, Number Theory - Diophantine problems, uniform distribution and applications. In: Elsholtz, C., Grabner, P. (eds.), Festschrift in honour of Robert F. Tichy’s 60th birthday, pp. 227–235. Springer, Cham (2017) Dujella, A., Kazalicki, M.: More on Diophantine sextuples, Number Theory - Diophantine problems, uniform distribution and applications. In: Elsholtz, C., Grabner, P. (eds.), Festschrift in honour of Robert F. Tichy’s 60th birthday, pp. 227–235. Springer, Cham (2017)
18.
go back to reference Dujella, A., Kazalicki, M., Mikić, M., Szikszai, M.: There are infinitely many rational Diophantine sextuples. Int. Math. Res. Not. IMRN 2017(2), 490–508 (2017)MathSciNetCrossRef Dujella, A., Kazalicki, M., Mikić, M., Szikszai, M.: There are infinitely many rational Diophantine sextuples. Int. Math. Res. Not. IMRN 2017(2), 490–508 (2017)MathSciNetCrossRef
19.
go back to reference Dujella, A., Kazalicki, M., Petričević, V.: Rational Diophantine sextuples with square denominators. J. Number Theory 205, 340–346 (2019)MathSciNetCrossRef Dujella, A., Kazalicki, M., Petričević, V.: Rational Diophantine sextuples with square denominators. J. Number Theory 205, 340–346 (2019)MathSciNetCrossRef
20.
go back to reference Dujella, A., Kazalicki, M., Petričević, V.: \(D(n)\)-quintuples with square elements. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 115, Article 172 (2021) Dujella, A., Kazalicki, M., Petričević, V.: \(D(n)\)-quintuples with square elements. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 115, Article 172 (2021)
21.
go back to reference Dujella, A., Kazalicki, M., Petričević, V.: Rational Diophantine sextuples containing two regular quadruples and one regular quintuple. Acta Math. Spalatensia 1, 19–27 (2021)CrossRef Dujella, A., Kazalicki, M., Petričević, V.: Rational Diophantine sextuples containing two regular quadruples and one regular quintuple. Acta Math. Spalatensia 1, 19–27 (2021)CrossRef
22.
go back to reference Dujella, A., Peral, J.C.: Elliptic curves induced by Diophantine triples. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 113, 791–806 (2019) Dujella, A., Peral, J.C.: Elliptic curves induced by Diophantine triples. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 113, 791–806 (2019)
23.
go back to reference Dujella, A., Peral, J.C.: High rank elliptic curves induced by rational Diophantine triples. Glas. Mat. Ser. III(55), 237–252 (2020)MathSciNetCrossRef Dujella, A., Peral, J.C.: High rank elliptic curves induced by rational Diophantine triples. Glas. Mat. Ser. III(55), 237–252 (2020)MathSciNetCrossRef
24.
go back to reference Dujella, A., Petričević, V.: Diophantine quadruples with the properties \(D(n_1)\)and\(D(n_2)\). Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 114, Article 21 (2020) Dujella, A., Petričević, V.: Diophantine quadruples with the properties \(D(n_1)\)and\(D(n_2)\). Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 114, Article 21 (2020)
25.
go back to reference Dujella, A., Petričević, V.: Doubly regular Diophantine quadruples. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 114, Article 189 (2020) Dujella, A., Petričević, V.: Doubly regular Diophantine quadruples. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 114, Article 189 (2020)
26.
go back to reference Gardner, M.: Mathematical games. Sci. Am. 216, 124; 119 (1967) Gardner, M.: Mathematical games. Sci. Am. 216, 124; 119 (1967)
29.
go back to reference Guy, R.K.: Unsolved Problems in Number Theory. Springer, New York (2004), Section D29 Guy, R.K.: Unsolved Problems in Number Theory. Springer, New York (2004), Section D29
30.
31.
go back to reference Heath, T.L.: Diophantus of Alexandria: A Study in the History of Greek Algebra, Powell’s Bookstore. Chicago; Martino Publishing, Mansfield Center (2003) Heath, T.L.: Diophantus of Alexandria: A Study in the History of Greek Algebra, Powell’s Bookstore. Chicago; Martino Publishing, Mansfield Center (2003)
32.
go back to reference Kazalicki, M., Naskrecki, B.: (with an appendix by L. Lasić), Diophantine triples and K3 surfaces. J. Number Theory 236, 41–70 (2022) Kazalicki, M., Naskrecki, B.: (with an appendix by L. Lasić), Diophantine triples and K3 surfaces. J. Number Theory 236, 41–70 (2022)
33.
go back to reference Kihel, A., Kihel, O.: On the intersection and the extendibility of \(P_t\) -sets. Far East J. Math. Sci. 3, 637–643 (2001) Kihel, A., Kihel, O.: On the intersection and the extendibility of \(P_t\) -sets. Far East J. Math. Sci. 3, 637–643 (2001)
34.
go back to reference Knapp, A.: Elliptic Curves. Princeton University Press (1992) Knapp, A.: Elliptic Curves. Princeton University Press (1992)
35.
go back to reference van Lint, J.H.: On a set of diophantine equations. T. H.-Report 68 - WSK-03, Department of Mathematics, Technological University Eindhoven, Eindhoven (1968) van Lint, J.H.: On a set of diophantine equations. T. H.-Report 68 - WSK-03, Department of Mathematics, Technological University Eindhoven, Eindhoven (1968)
38.
go back to reference Stoll, M.: Diagonal genus 5 curves, elliptic curves over \(\mathbb{Q} (t)\), and rational diophantine quintuples. Acta Arith. 190, 239–261 (2019)MathSciNetCrossRef Stoll, M.: Diagonal genus 5 curves, elliptic curves over \(\mathbb{Q} (t)\), and rational diophantine quintuples. Acta Arith. 190, 239–261 (2019)MathSciNetCrossRef
40.
go back to reference Zhang, Y., Grossman, G.: On Diophantine triples and quadruples. Notes Number Theory Discrete Math. 21, 6–16 (2015) Zhang, Y., Grossman, G.: On Diophantine triples and quadruples. Notes Number Theory Discrete Math. 21, 6–16 (2015)
Metadata
Title
Triples, Quadruples and Quintuples Which are D(n)-Sets for Several n’s
Author
Andrej Dujella
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6911-7_5

Premium Partner