Skip to main content
Top
Published in:

2019 | OriginalPaper | Chapter

Trust, Resilience and Interpretability of AI Models

Author : Susmit Jha

Published in: Numerical Software Verification

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this tutorial, we present our recent work on building trusted, resilient and interpretable AI models by combining symbolic methods developed for automated reasoning with connectionist learning methods that use deep neural networks. The increasing adoption of artificial intelligence and machine learning in systems, including safety-critical systems, has created a pressing need for developing scalable techniques that can be used to establish trust over their safe behavior, resilience to adversarial attacks, and interpretability to enable human audits. This tutorial is comprised of three components: review of techniques for verification of neural networks, methods for using geometric invariants to defend against adversarial attacks, and techniques for extracting logical symbolic rules by reverse engineering machine learning models. These techniques form the core of TRINITY: Trusted, Resilient and Interpretable AI framework being developed at SRI. In this tutorial, we identify the key challenges in building the TRINITY framework, and report recent results on each of these three fronts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abouzied, A., Angluin, D., Papadimitriou, C., Hellerstein, J.M., Silberschatz, A.: Learning and verifying quantified boolean queries by example. In: ACM Symposium on Principles of Database Systems, pp. 49–60. ACM (2013) Abouzied, A., Angluin, D., Papadimitriou, C., Hellerstein, J.M., Silberschatz, A.: Learning and verifying quantified boolean queries by example. In: ACM Symposium on Principles of Database Systems, pp. 49–60. ACM (2013)
2.
go back to reference Angluin, D.: Computational learning theory: survey and selected bibliography. In: ACM Symposium on Theory of Computing, pp. 351–369. ACM (1992) Angluin, D.: Computational learning theory: survey and selected bibliography. In: ACM Symposium on Theory of Computing, pp. 351–369. ACM (1992)
3.
go back to reference Angluin, D., Kharitonov, M.: When won’t membership queries help? In: ACM Symposium on Theory of Computing, pp. 444–454. ACM (1991) Angluin, D., Kharitonov, M.: When won’t membership queries help? In: ACM Symposium on Theory of Computing, pp. 444–454. ACM (1991)
4.
go back to reference Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420 (2018) Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. arXiv preprint arXiv:​1802.​00420 (2018)
5.
go back to reference Bengio, Y., Mesnil, G., Dauphin, Y., Rifai, S.: Better mixing via deep representations. In: International Conference on Machine Learning, pp. 552–560 (2013) Bengio, Y., Mesnil, G., Dauphin, Y., Rifai, S.: Better mixing via deep representations. In: International Conference on Machine Learning, pp. 552–560 (2013)
6.
go back to reference Bittner, B., Bozzano, M., Cimatti, A., Gario, M., Griggio, A.: Towards pareto-optimal parameter synthesis for monotonie cost functions. In: FMCAD, pp. 23–30, October 2014 Bittner, B., Bozzano, M., Cimatti, A., Gario, M., Griggio, A.: Towards pareto-optimal parameter synthesis for monotonie cost functions. In: FMCAD, pp. 23–30, October 2014
11.
go back to reference Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Learning and verification of feedback control systems using feedforward neural networks. IFAC-PapersOnLine 51(16), 151–156 (2018)CrossRef Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Learning and verification of feedback control systems using feedforward neural networks. IFAC-PapersOnLine 51(16), 151–156 (2018)CrossRef
15.
go back to reference Feng, C., Muggleton, S.: Towards inductive generalisation in higher order logic. In: 9th International Workshop on Machine Learning, pp. 154–162 (2014)CrossRef Feng, C., Muggleton, S.: Towards inductive generalisation in higher order logic. In: 9th International Workshop on Machine Learning, pp. 154–162 (2014)CrossRef
16.
18.
go back to reference Goldsmith, J., Sloan, R.H., Szörényi, B., Turán, G.: Theory revision with queries: horn, read-once, and parity formulas. Artif. Intell. 156(2), 139–176 (2004)MathSciNetCrossRef Goldsmith, J., Sloan, R.H., Szörényi, B., Turán, G.: Theory revision with queries: horn, read-once, and parity formulas. Artif. Intell. 156(2), 139–176 (2004)MathSciNetCrossRef
19.
20.
go back to reference Grosse, K., Manoharan, P., Papernot, N., Backes, M., McDaniel, P.: On the (statistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280 (2017) Grosse, K., Manoharan, P., Papernot, N., Backes, M., McDaniel, P.: On the (statistical) detection of adversarial examples. arXiv preprint arXiv:​1702.​06280 (2017)
23.
go back to reference Hellerstein, L., Servedio, R.A.: On PAC learning algorithms for rich boolean function classes. Theoret. Comput. Sci. 384(1), 66–76 (2007)MathSciNetCrossRef Hellerstein, L., Servedio, R.A.: On PAC learning algorithms for rich boolean function classes. Theoret. Comput. Sci. 384(1), 66–76 (2007)MathSciNetCrossRef
25.
go back to reference Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based program synthesis. In: ICSE, pp. 215–224. IEEE (2010) Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based program synthesis. In: ICSE, pp. 215–224. IEEE (2010)
26.
go back to reference Jha, S., Jang, U., Jha, S., Jalaian, B.: Detecting adversarial examples using data manifolds. In: 2018 IEEE Military Communications Conference (MILCOM), MILCOM 2018, pp. 547–552. IEEE (2018) Jha, S., Jang, U., Jha, S., Jalaian, B.: Detecting adversarial examples using data manifolds. In: 2018 IEEE Military Communications Conference (MILCOM), MILCOM 2018, pp. 547–552. IEEE (2018)
28.
go back to reference Jha, S., Sahai, T., Raman, V., Pinto, A., Francis, M.: Explaining AI decisions using efficient methods for learning sparse boolean formulae. J. Autom. Reason. 1–21 (2018) Jha, S., Sahai, T., Raman, V., Pinto, A., Francis, M.: Explaining AI decisions using efficient methods for learning sparse boolean formulae. J. Autom. Reason. 1–21 (2018)
29.
go back to reference Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta Informatica 54, 693–726 (2016). Special Issue on SynthesisMathSciNetCrossRef Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta Informatica 54, 693–726 (2016). Special Issue on SynthesisMathSciNetCrossRef
30.
go back to reference Jones, M.C., Marron, J.S., Sheather, S.J.: A brief survey of bandwidth selection for density estimation. J. Am. Stat. Assoc. 91(433), 401–407 (1996)MathSciNetCrossRef Jones, M.C., Marron, J.S., Sheather, S.J.: A brief survey of bandwidth selection for density estimation. J. Am. Stat. Assoc. 91(433), 401–407 (1996)MathSciNetCrossRef
34.
go back to reference Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae and finite automata. J. ACM (JACM) 41(1), 67–95 (1994)MathSciNetCrossRef Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae and finite automata. J. ACM (JACM) 41(1), 67–95 (1994)MathSciNetCrossRef
37.
38.
go back to reference LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRef LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRef
40.
go back to reference Lee, J., Moray, N.: Trust, control strategies and allocation of function in human-machine systems. Ergonomics 35(10), 1243–1270 (1992)CrossRef Lee, J., Moray, N.: Trust, control strategies and allocation of function in human-machine systems. Ergonomics 35(10), 1243–1270 (1992)CrossRef
41.
go back to reference van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)MATH van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)MATH
42.
go back to reference Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017) Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:​1706.​06083 (2017)
44.
45.
go back to reference Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016) Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)
47.
go back to reference Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519. ACM (2017) Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519. ACM (2017)
48.
go back to reference Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 372–387. IEEE (2016) Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 372–387. IEEE (2016)
49.
go back to reference Papernot, N., McDaniel, P., Swami, A., Harang, R.: Crafting adversarial input sequences for recurrent neural networks. In: 2016 IEEE Military Communications Conference, MILCOM 2016, pp. 49–54. IEEE (2016) Papernot, N., McDaniel, P., Swami, A., Harang, R.: Crafting adversarial input sequences for recurrent neural networks. In: 2016 IEEE Military Communications Conference, MILCOM 2016, pp. 49–54. IEEE (2016)
50.
go back to reference Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J. ACM (JACM) 35(4), 965–984 (1988)MathSciNetCrossRef Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J. ACM (JACM) 35(4), 965–984 (1988)MathSciNetCrossRef
51.
go back to reference Raman, V., Lignos, C., Finucane, C., Lee, K.C.T., Marcus, M.P., Kress-Gazit, H.: Sorry Dave, I’m afraid I can’t do that: explaining unachievable robot tasks using natural language. In: Robotics: Science and Systems (2013) Raman, V., Lignos, C., Finucane, C., Lee, K.C.T., Marcus, M.P., Kress-Gazit, H.: Sorry Dave, I’m afraid I can’t do that: explaining unachievable robot tasks using natural language. In: Robotics: Science and Systems (2013)
54.
go back to reference Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRef Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRef
55.
go back to reference Sankaranarayanan, S., Miller, C., Raghunathan, R., Ravanbakhsh, H., Fainekos, G.: A model-based approach to synthesizing insulin infusion pump usage parameters for diabetic patients. In: Annual Allerton Conference on Communication, Control, and Computing, pp. 1610–1617, October 2012. https://doi.org/10.1109/Allerton.2012.6483413 Sankaranarayanan, S., Miller, C., Raghunathan, R., Ravanbakhsh, H., Fainekos, G.: A model-based approach to synthesizing insulin infusion pump usage parameters for diabetic patients. In: Annual Allerton Conference on Communication, Control, and Computing, pp. 1610–1617, October 2012. https://​doi.​org/​10.​1109/​Allerton.​2012.​6483413
58.
go back to reference Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4(Jun), 119–155 (2003)MathSciNetMATH Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4(Jun), 119–155 (2003)MathSciNetMATH
59.
go back to reference Shaham, U., Yamada, Y., Negahban, S.: Understanding adversarial training: increasing local stability of neural nets through robust optimization. arXiv preprint arXiv:1511.05432 (2015) Shaham, U., Yamada, Y., Negahban, S.: Understanding adversarial training: increasing local stability of neural nets through robust optimization. arXiv preprint arXiv:​1511.​05432 (2015)
62.
go back to reference Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRef Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRef
64.
go back to reference Yuan, C., Lim, H., Lu, T.C.: Most relevant explanation in Bayesian networks. J. Artif. Intell. Res. (JAIR) 42, 309–352 (2011)MathSciNetMATH Yuan, C., Lim, H., Lu, T.C.: Most relevant explanation in Bayesian networks. J. Artif. Intell. Res. (JAIR) 42, 309–352 (2011)MathSciNetMATH
Metadata
Title
Trust, Resilience and Interpretability of AI Models
Author
Susmit Jha
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-28423-7_1

Premium Partner