Skip to main content
Top
Published in:

03-11-2023

Trustworthy Artificial Intelligence Based on an Explicable Temporal Feature Network for Industrial Fault Diagnosis

Authors: Junwei Hu, Yong Zhang, Weigang Li, Xiujuan Zheng, Zhiqiang Tian

Published in: Cognitive Computation | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Artificial intelligence is extensively utilized across various high-risk domains, and ensuring the safety, reliability, and trustworthiness of these systems is of paramount importance. This necessitates adherence to several imperative requirements such as fairness, explainability, accountability, reliability, and acceptability in order to establish the trustworthiness of these systems. The decision-making process of the systems relies heavily on data quality. However, existing studies in the field of industrial fault diagnosis have not fully considered the influence of noise interference on the system accuracy and the interpretability of the algorithm. Therefore, this study aims to investigate reliable and robust diagnostic techniques along with black-box model interpretation when confronted with noise interference in practical applications for industrial fault diagnosis. To solve the above problems, an explicable temporal feature network (ETFN) based on deep Shapley additive explanation (Deep SHAP) values is proposed, which increases the robustness and interpretability of the model. First, adaptive features extracted from the improved deep residual shrinkage network are combined with empirical features to increase the robustness of the model. Then, the combined features are used as input to the ETFN model for rotating device diagnosis. Deep SHAP is used to rank all the combined feature contributions and further interpret the model diagnosis by adjusting the number of features. The proposed ETFN achieves a good balance between stability, accuracy, and interpretation on three real-world datasets. Leading accuracy is achieved on all three datasets. In particular, a diagnostic accuracy of more than 97% can still be maintained when perturbed by noise, which is not achieved by alternative methods. The interoperability of the proposed method in industrial diagnostic applications is also enhanced by Deep SHAP. We implemented ETFN for extremely robust diagnosis and human-computer interaction in real noise for industrial data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kaur D, Uslu S, Rittichier KJ, Durresi A. Trustworthy artificial intelligence: a review. ACM Comput Surv (CSUR). 2022;55(2):1–38.CrossRef Kaur D, Uslu S, Rittichier KJ, Durresi A. Trustworthy artificial intelligence: a review. ACM Comput Surv (CSUR). 2022;55(2):1–38.CrossRef
2.
go back to reference Crawford K. The atlas of AI: Power, politics, and the planetary costs of artificial intelligence, Yale University Press, 2021. Crawford K. The atlas of AI: Power, politics, and the planetary costs of artificial intelligence, Yale University Press, 2021.
3.
go back to reference Feng Y, Chen J, Xie J, Zhang T, Lv H, Pan T. Meta-learning as a promising approach for few-shot cross-domain fault diagnosis: algorithms, applications, and prospects. Knowl Based Syst. 2022;235. Feng Y, Chen J, Xie J, Zhang T, Lv H, Pan T. Meta-learning as a promising approach for few-shot cross-domain fault diagnosis: algorithms, applications, and prospects. Knowl Based Syst. 2022;235.
4.
go back to reference Zheng X, Li H, Zhang S, Zhang Y, Li J, Zhang Y, Zhao W. Hydrodynamic feature extraction and intelligent identification of flow regimes in vaneless space of a pump turbine using improved empirical wavelet transform and Bayesian optimized convolutional neural network. Energy. 2023;282. https://doi.org/10.1016/j.energy.2023.128705. Zheng X, Li H, Zhang S, Zhang Y, Li J, Zhang Y, Zhao W. Hydrodynamic feature extraction and intelligent identification of flow regimes in vaneless space of a pump turbine using improved empirical wavelet transform and Bayesian optimized convolutional neural network. Energy. 2023;282. https://​doi.​org/​10.​1016/​j.​energy.​2023.​128705.
7.
go back to reference Xie J, Li Z, Zhou Z, Liu S. A novel bearing fault classification method based on XGBoost: the fusion of deep learning-based features and empirical features. IEEE Trans Instrum Meas. 2020;70:1–9. Xie J, Li Z, Zhou Z, Liu S. A novel bearing fault classification method based on XGBoost: the fusion of deep learning-based features and empirical features. IEEE Trans Instrum Meas. 2020;70:1–9.
9.
go back to reference Ma L, Ding Y, Wang Z, Wang C, Ma J, Lu C. An interpretable data augmentation scheme for machine fault diagnosis based on a sparsity-constrained generative adversarial network. Expert Syst Appl. 2021;182:115234.CrossRef Ma L, Ding Y, Wang Z, Wang C, Ma J, Lu C. An interpretable data augmentation scheme for machine fault diagnosis based on a sparsity-constrained generative adversarial network. Expert Syst Appl. 2021;182:115234.CrossRef
10.
go back to reference Zhang J, Wang Y, Zhu K, Zhang Y, Li Y. Diagnosis of interturn short-circuit faults in permanent magnet synchronous motors based on few-shot learning under a federated learning framework. IEEE Trans Industr Inf. 2021;17(12):8495–504.CrossRef Zhang J, Wang Y, Zhu K, Zhang Y, Li Y. Diagnosis of interturn short-circuit faults in permanent magnet synchronous motors based on few-shot learning under a federated learning framework. IEEE Trans Industr Inf. 2021;17(12):8495–504.CrossRef
11.
go back to reference Liu Y, Garg S, Nie J, Zhang Y, Xiong Z, Kang J, Hossain MS. Deep anomaly detection for time-series data in industrial IoT: a communication-efficient on-device federated learning approach. IEEE Internet Things J. 2020;8(8):6348–58.CrossRef Liu Y, Garg S, Nie J, Zhang Y, Xiong Z, Kang J, Hossain MS. Deep anomaly detection for time-series data in industrial IoT: a communication-efficient on-device federated learning approach. IEEE Internet Things J. 2020;8(8):6348–58.CrossRef
12.
go back to reference Yang Z-X, Rong H-J, Wong PK, Angelov P, Vong CM, Chiu CW, Yang Z-X. A novel multiple feature-based engine knock detection system using sparse Bayesian extreme learning machine. Cogn Comput. 2022;14(2):828–51.CrossRef Yang Z-X, Rong H-J, Wong PK, Angelov P, Vong CM, Chiu CW, Yang Z-X. A novel multiple feature-based engine knock detection system using sparse Bayesian extreme learning machine. Cogn Comput. 2022;14(2):828–51.CrossRef
13.
go back to reference Zhong S-S, Fu S, Lin L. A novel gas turbine fault diagnosis method based on transfer learning with CNN. Measurement. 2019;137:435–53.CrossRef Zhong S-S, Fu S, Lin L. A novel gas turbine fault diagnosis method based on transfer learning with CNN. Measurement. 2019;137:435–53.CrossRef
14.
go back to reference Ke L, Zhang Y, Yang B, Luo Z, Liu Z. Fault diagnosis with synchrosqueezing transform and optimized deep convolutional neural network: an application in modular multilevel converters. Neurocomputing. 2021;430:24–33.CrossRef Ke L, Zhang Y, Yang B, Luo Z, Liu Z. Fault diagnosis with synchrosqueezing transform and optimized deep convolutional neural network: an application in modular multilevel converters. Neurocomputing. 2021;430:24–33.CrossRef
16.
go back to reference Yuan Y, Ma G, Cheng C, Zhou B, Zhao H, Zhang H-T, Ding H. A general end-to-end diagnosis framework for manufacturing systems. Natl Sci Rev. 2020;7(2):418–29.CrossRef Yuan Y, Ma G, Cheng C, Zhou B, Zhao H, Zhang H-T, Ding H. A general end-to-end diagnosis framework for manufacturing systems. Natl Sci Rev. 2020;7(2):418–29.CrossRef
18.
go back to reference Yan L, Zhang H-T, Goncalves J, Xiao Y, Wang M, Guo Y, Sun C, Tang X, Jing L, Zhang M, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell. 2020;2(5):283–8.CrossRef Yan L, Zhang H-T, Goncalves J, Xiao Y, Wang M, Guo Y, Sun C, Tang X, Jing L, Zhang M, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell. 2020;2(5):283–8.CrossRef
19.
go back to reference Cheng L, Li L, Li S, Ran S, Zhang Z, Zhang Y. Prediction of gas concentration evolution with evolutionary attention-based temporal graph convolutional network. Expert Syst Appl. 2022;200:116944.CrossRef Cheng L, Li L, Li S, Ran S, Zhang Z, Zhang Y. Prediction of gas concentration evolution with evolutionary attention-based temporal graph convolutional network. Expert Syst Appl. 2022;200:116944.CrossRef
20.
go back to reference Vilone G, Longo L. Notions of explainability and evaluation approaches for explainable artificial intelligence. Inf Fusion. 2021;76:89–106.CrossRef Vilone G, Longo L. Notions of explainability and evaluation approaches for explainable artificial intelligence. Inf Fusion. 2021;76:89–106.CrossRef
21.
go back to reference Liu Y, Li L, Zhao S, Song S. A global surrogate model technique based on principal component analysis and kriging for uncertainty propagation of dynamic systems. Reliab Eng Syst Saf. 2021;207:107365.CrossRef Liu Y, Li L, Zhao S, Song S. A global surrogate model technique based on principal component analysis and kriging for uncertainty propagation of dynamic systems. Reliab Eng Syst Saf. 2021;207:107365.CrossRef
22.
go back to reference Pandey P, Rai A, Mitra M. Explainable 1-D convolutional neural network for damage detection using lamb wave. Mech Syst Signal Process. 2022;164. Pandey P, Rai A, Mitra M. Explainable 1-D convolutional neural network for damage detection using lamb wave. Mech Syst Signal Process. 2022;164.
23.
go back to reference Santos OL, Dotta D, Wang M, Chow JH, Decker IC. Performance analysis of a DNN classifier for power system events using an interpretability method. Int J Electr Power Energy Syst. 2022;136. Santos OL, Dotta D, Wang M, Chow JH, Decker IC. Performance analysis of a DNN classifier for power system events using an interpretability method. Int J Electr Power Energy Syst. 2022;136.
24.
go back to reference Ibrahim M, Louie M, Modarres C, Paisley J. Global explanations of neural networks: mapping the landscape of predictions, in: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society; 2019, pp. 279–287. Ibrahim M, Louie M, Modarres C, Paisley J. Global explanations of neural networks: mapping the landscape of predictions, in: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society; 2019, pp. 279–287.
25.
go back to reference Yang Z-B, Zhang J-P, Zhao Z-B, Zhai Z, Chen X-F. Interpreting network knowledge with attention mechanism for bearing fault diagnosis. Appl Soft Comput. 2020;97:106829.CrossRef Yang Z-B, Zhang J-P, Zhao Z-B, Zhai Z, Chen X-F. Interpreting network knowledge with attention mechanism for bearing fault diagnosis. Appl Soft Comput. 2020;97:106829.CrossRef
26.
go back to reference Zhu C, Chen Z, Zhao R, Wang J, Yan R. Decoupled feature-temporal CNN: explaining deep learning-based machine health monitoring. IEEE Trans Instrum Meas. 2021;70:1–13. Zhu C, Chen Z, Zhao R, Wang J, Yan R. Decoupled feature-temporal CNN: explaining deep learning-based machine health monitoring. IEEE Trans Instrum Meas. 2021;70:1–13.
27.
go back to reference Zhang X, He C, Lu Y, Chen B, Zhu L, Zhang L. Fault diagnosis for small samples based on attention mechanism. Measurement. 2022;187:110242.CrossRef Zhang X, He C, Lu Y, Chen B, Zhu L, Zhang L. Fault diagnosis for small samples based on attention mechanism. Measurement. 2022;187:110242.CrossRef
28.
go back to reference Li T, Zhao Z, Sun C, Cheng L, Chen X, Yan R, Gao RX. WaveletKernelNet: an interpretable deep neural network for industrial intelligent diagnosis. IEEE Trans Syst Man Cybern Syst. 2022;52(4):2302–12.CrossRef Li T, Zhao Z, Sun C, Cheng L, Chen X, Yan R, Gao RX. WaveletKernelNet: an interpretable deep neural network for industrial intelligent diagnosis. IEEE Trans Syst Man Cybern Syst. 2022;52(4):2302–12.CrossRef
29.
go back to reference Li T, Sun C, Li S, Wang Z, Chen X, Yan R. Explainable graph wavelet denoising network for intelligent fault diagnosis. IEEE Trans Neural Netw Learn Syst. 2022, pp. 1–14. Li T, Sun C, Li S, Wang Z, Chen X, Yan R. Explainable graph wavelet denoising network for intelligent fault diagnosis. IEEE Trans Neural Netw Learn Syst. 2022, pp. 1–14.
30.
go back to reference Li Y, Zhou Z, Sun C, Chen X, Yan R. Variational attention-based interpretable transformer network for rotary machine fault diagnosis. IEEE Trans Neural Netw Learn Syst. 2022, pp. 1–14. Li Y, Zhou Z, Sun C, Chen X, Yan R. Variational attention-based interpretable transformer network for rotary machine fault diagnosis. IEEE Trans Neural Netw Learn Syst. 2022, pp. 1–14.
31.
go back to reference He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
32.
go back to reference Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6(9):2812–31.CrossRef Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6(9):2812–31.CrossRef
33.
go back to reference Zhang Y, Xin Y, Liu Z-W, Chi M, Ma G. Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE. Reliab Eng Syst Saf. 2022;220. Zhang Y, Xin Y, Liu Z-W, Chi M, Ma G. Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE. Reliab Eng Syst Saf. 2022;220.
34.
go back to reference Li Y, Chen Y, Dai X, Chen D, Liu M, Yuan L, Liu Z, Zhang L, Vasconcelos N. Micronet: Improving image recognition with extremely low flops, in: Proceedings of the IEEE/CVF International conference on computer vision, 2021, pp. 468–477. Li Y, Chen Y, Dai X, Chen D, Liu M, Yuan L, Liu Z, Zhang L, Vasconcelos N. Micronet: Improving image recognition with extremely low flops, in: Proceedings of the IEEE/CVF International conference on computer vision, 2021, pp. 468–477.
35.
go back to reference Woo S, Park J, Lee J-Y, Kweon IS. Cbam: Convolutional block attention module, in: Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3–19. Woo S, Park J, Lee J-Y, Kweon IS. Cbam: Convolutional block attention module, in: Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3–19.
37.
go back to reference Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: International conference on machine learning, 2017, pp. 3145–3153. Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: International conference on machine learning, 2017, pp. 3145–3153.
38.
go back to reference Shao H, Jiang H, Zhang H, Duan W, Liang T, Wu S. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mech Syst Signal Process. 2018;100:743–65.CrossRef Shao H, Jiang H, Zhang H, Duan W, Liang T, Wu S. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mech Syst Signal Process. 2018;100:743–65.CrossRef
39.
go back to reference Zhao R, Wang D, Yan R, Mao K, Shen F, Wang J. Machine health monitoring using local feature-based gated recurrent unit networks. IEEE Trans Ind Electron. 2017;65(2):1539–48.CrossRef Zhao R, Wang D, Yan R, Mao K, Shen F, Wang J. Machine health monitoring using local feature-based gated recurrent unit networks. IEEE Trans Ind Electron. 2017;65(2):1539–48.CrossRef
Metadata
Title
Trustworthy Artificial Intelligence Based on an Explicable Temporal Feature Network for Industrial Fault Diagnosis
Authors
Junwei Hu
Yong Zhang
Weigang Li
Xiujuan Zheng
Zhiqiang Tian
Publication date
03-11-2023
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10218-4

Other articles of this Issue 2/2024

Cognitive Computation 2/2024 Go to the issue

Premium Partner