Skip to main content
Top
Published in:

20-04-2024

Truthful double auction based incentive mechanism for participatory sensing systems

Authors: Asif Iqbal Middya, Sarbani Roy

Published in: Peer-to-Peer Networking and Applications | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The sensors available in the smartphones are useful to explore a diverse range of city dynamics (e.g. noise pollution, road condition, traffic condition, etc.). The potential of the smartphone sensors coupled with their widespread availability help to emerge a new paradigm of sensing known as participatory sensing. It uses the power of smartphone equipped sensors to collect, store, and analyze data with high spatiotemporal granularity. In a participatory sensing based system, a task provider (also known as a crowdsourcer) may have a set of sensing tasks regarding different dynamics of a city. Here, adequate users’ participation is necessary to acquire a sufficient amount of data which is a key factor for the participatory sensing based systems to provide good service quality. The task providers appoint a set of task executors (smartphone users i.e. participants of crowdsensing tasks) to execute those sensing tasks. But, existing works on sensing task allocation suffer from lack of good incentive mechanisms that are attractive for the task executors. In order to address this issue, in this paper, a double auction based incentive mechanism called TATA (Truthful Double Auction for Task Allocation) is proposed for participatory sensing. TATA performs fair allocation of tasks which is leading to efficient incentive mechanism. In the case of TATA, the fair allocation of sensing tasks of the task providers to the task executers indicates that the proposed double auction mechanism is able to satisfy the truthfulness property in order to resist market manipulation (i.e., untruthful bidding and asking). Specifically, TATA achieves all the desirable properties like individual rationality, truthfulness (i.e. incentive compatibility), budget balance, etc. TATA is also computationally efficient and yields high system efficiency. Additionally, the performance of the proposed incentive mechanism is evaluated and compared with the existing mechanisms through extensive simulations based on the real-world data from Amazon Mechanical Turk. TATA yields high utility and satisfaction for the task providers and executors as compared to the existing mechanisms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Middya AI, Dey P, Roy S (2022) Iot-based crowdsensing for smart environments. In: Internet of Things for Smart Environments. Springer, pp. 33–58 Middya AI, Dey P, Roy S (2022) Iot-based crowdsensing for smart environments. In: Internet of Things for Smart Environments. Springer, pp. 33–58
2.
go back to reference Kanhere SS (2013) Participatory sensing: Crowdsourcing data from mobile smartphones in urban spaces. In: International Conference on Distributed Computing and Internet Technology. Springer, pp. 19–26 Kanhere SS (2013) Participatory sensing: Crowdsourcing data from mobile smartphones in urban spaces. In: International Conference on Distributed Computing and Internet Technology. Springer, pp. 19–26
3.
go back to reference Patra S, Middya AI, Roy S (2021) “PotSpot: Participatory sensing based monitoring system for pothole detection using deep learning,” Multimedia Tools and Applications, vol. 80, no. 16, pp. 25 171–25 195,. [Online]. Available: https://doi.org/10.1007/s11042-021-10874-4 Patra S, Middya AI, Roy S (2021) “PotSpot: Participatory sensing based monitoring system for pothole detection using deep learning,” Multimedia Tools and Applications, vol. 80, no. 16, pp. 25 171–25 195,. [Online]. Available: https://​doi.​org/​10.​1007/​s11042-021-10874-4
8.
go back to reference Middya AI, Roy S (2021) Spatial interpolation techniques on participatory sensing data. ACM Transactions on Spatial Algorithms and Systems 7(3):1–32 Middya AI, Roy S (2021) Spatial interpolation techniques on participatory sensing data. ACM Transactions on Spatial Algorithms and Systems 7(3):1–32
9.
go back to reference Chandra B, Middya AI, Roy S (2021) Spatio-temporal prediction of noise pollution using participatory sensing. In: Emerging Technologies in Data Mining and Information Security. Springer, pp. 597–607 Chandra B, Middya AI, Roy S (2021) Spatio-temporal prediction of noise pollution using participatory sensing. In: Emerging Technologies in Data Mining and Information Security. Springer, pp. 597–607
10.
go back to reference Liu Z, Jiang S, Zhou P, Li M (2017) A participatory urban traffic monitoring system: The power of bus riders. IEEE Transactions on Intelligent Transportation Systems 18(10):2851–2864CrossRef Liu Z, Jiang S, Zhou P, Li M (2017) A participatory urban traffic monitoring system: The power of bus riders. IEEE Transactions on Intelligent Transportation Systems 18(10):2851–2864CrossRef
11.
go back to reference Yan H, Hua Q, Zhang D, Wan J, Rho S, Song H (2017) Cloud-assisted mobile crowd sensing for traffic congestion control. Mobile Networks and Applications 22(6):1212–1218CrossRef Yan H, Hua Q, Zhang D, Wan J, Rho S, Song H (2017) Cloud-assisted mobile crowd sensing for traffic congestion control. Mobile Networks and Applications 22(6):1212–1218CrossRef
12.
go back to reference Takahashi J, Kobana Y, Isoyama N, Tobe Y, Lopez G (2018) Ykob: Participatory sensing-based road condition monitoring using smartphones worn by cyclist. Electronics and Communications in Japan 101(4):3–14CrossRef Takahashi J, Kobana Y, Isoyama N, Tobe Y, Lopez G (2018) Ykob: Participatory sensing-based road condition monitoring using smartphones worn by cyclist. Electronics and Communications in Japan 101(4):3–14CrossRef
13.
go back to reference Nunes DE, Mota VF (2019) A participatory sensing framework to classify road surface quality. Journal of Internet Services and Applications 10(1):13CrossRef Nunes DE, Mota VF (2019) A participatory sensing framework to classify road surface quality. Journal of Internet Services and Applications 10(1):13CrossRef
14.
go back to reference Hu K, Sivaraman V, Luxan BG, Rahman A (2015) Design and evaluation of a metropolitan air pollution sensing system. IEEE Sensors J 16(5):1448–1459CrossRef Hu K, Sivaraman V, Luxan BG, Rahman A (2015) Design and evaluation of a metropolitan air pollution sensing system. IEEE Sensors J 16(5):1448–1459CrossRef
15.
go back to reference Middya AI, Roy S, Dutta J, Das R (2020) Jusense: A unified framework for participatory-based urban sensing system. Mobile Networks and Applications, pp. 1–26 Middya AI, Roy S, Dutta J, Das R (2020) Jusense: A unified framework for participatory-based urban sensing system. Mobile Networks and Applications, pp. 1–26
16.
go back to reference Nie J, Luo J, Xiong Z, Niyato D (2018) Wang P (2018) A stackelberg game approach toward socially-aware incentive mechanisms for mobile crowdsensing. IEEE Trans Wirel Commun 18(1):724–738CrossRef Nie J, Luo J, Xiong Z, Niyato D (2018) Wang P (2018) A stackelberg game approach toward socially-aware incentive mechanisms for mobile crowdsensing. IEEE Trans Wirel Commun 18(1):724–738CrossRef
17.
go back to reference Wang Z, Li J, Hu J, Ren J, Wang Q, Li Z, Li Y (2021) Towards privacy-driven truthful incentives for mobile crowdsensing under untrusted platform. IEEE Trans Mob Comput Wang Z, Li J, Hu J, Ren J, Wang Q, Li Z, Li Y (2021) Towards privacy-driven truthful incentives for mobile crowdsensing under untrusted platform. IEEE Trans Mob Comput
18.
go back to reference Yang D, Xue G, Fang X, Tang J (2015) Incentive mechanisms for crowdsensing: Crowdsourcing with smartphones. IEEE/ACM Trans Networking 24(3):1732–1744CrossRef Yang D, Xue G, Fang X, Tang J (2015) Incentive mechanisms for crowdsensing: Crowdsourcing with smartphones. IEEE/ACM Trans Networking 24(3):1732–1744CrossRef
19.
go back to reference Jiang N, Xu D, Zhou J, Yan H, Wan T, Zheng J (2020) Toward optimal participant decisions with voting-based incentive model for crowd sensing. Inf Sci 512:1–17CrossRef Jiang N, Xu D, Zhou J, Yan H, Wan T, Zheng J (2020) Toward optimal participant decisions with voting-based incentive model for crowd sensing. Inf Sci 512:1–17CrossRef
20.
go back to reference Cai H, Zhu Y, Feng Z, Zhu H, Yu J, Cao J (2018) Truthful incentive mechanisms for mobile crowd sensing with dynamic smartphones. Comput Netw 141:1–16CrossRef Cai H, Zhu Y, Feng Z, Zhu H, Yu J, Cao J (2018) Truthful incentive mechanisms for mobile crowd sensing with dynamic smartphones. Comput Netw 141:1–16CrossRef
21.
go back to reference Jiang L-Y, He F, Wang Y, Sun L-J (2017) Huang H-P (2017). Quality-aware incentive mechanism for mobile crowd sensing, J Sensors Jiang L-Y, He F, Wang Y, Sun L-J (2017) Huang H-P (2017). Quality-aware incentive mechanism for mobile crowd sensing, J Sensors
22.
go back to reference Jin W, Li M, Guoy L, Yang L (2018) Dpda: A differentially private double auction scheme for mobile crowd sensing. In: 2018 IEEE Conference on Communications and Network Security (CNS). IEEE, pp. 1–9 Jin W, Li M, Guoy L, Yang L (2018) Dpda: A differentially private double auction scheme for mobile crowd sensing. In: 2018 IEEE Conference on Communications and Network Security (CNS). IEEE, pp. 1–9
23.
go back to reference Chen S, x Liu M, Chen X (2016) A truthful double auction for two-sided heterogeneous mobile crowdsensing markets. Comput Commun 81:31–42 Chen S, x Liu M, Chen X (2016) A truthful double auction for two-sided heterogeneous mobile crowdsensing markets. Comput Commun 81:31–42
24.
go back to reference Deng X, Goldberg P, Tang B, Zhang J (2014) Revenue maximization in a bayesian double auction market. Theor Comput Sci 539:1–12MathSciNetCrossRef Deng X, Goldberg P, Tang B, Zhang J (2014) Revenue maximization in a bayesian double auction market. Theor Comput Sci 539:1–12MathSciNetCrossRef
25.
go back to reference Rana R, Chou CT, Bulusu N, Kanhere S, Hu W (2015) Ear-phone: A context-aware noise mapping using smart phones. Pervasive and Mobile Computing 17:1–22CrossRef Rana R, Chou CT, Bulusu N, Kanhere S, Hu W (2015) Ear-phone: A context-aware noise mapping using smart phones. Pervasive and Mobile Computing 17:1–22CrossRef
26.
go back to reference Maisonneuve N, Stevens M, Niessen ME, Steels L (2009) Noisetube: Measuring and mapping noise pollution with mobile phones. In: Information technologies in environmental engineering. Springer, pp. 215–228 Maisonneuve N, Stevens M, Niessen ME, Steels L (2009) Noisetube: Measuring and mapping noise pollution with mobile phones. In: Information technologies in environmental engineering. Springer, pp. 215–228
27.
go back to reference Dutta J, Pramanick P, Roy S (2017) Noisesense: Crowdsourced context aware sensing for real time noise pollution monitoring of the city. In: 2017 IEEE ANTS. IEEE, 2017, pp. 1–6 Dutta J, Pramanick P, Roy S (2017) Noisesense: Crowdsourced context aware sensing for real time noise pollution monitoring of the city. In: 2017 IEEE ANTS. IEEE, 2017, pp. 1–6
28.
go back to reference Bales E, Nikzad N, Quick N, Ziftci C, Patrick K, Griswold WG (2019) Personal pollution monitoring: mobile real-time air quality in daily life. Pers Ubiquit Comput 23(2):309–328CrossRef Bales E, Nikzad N, Quick N, Ziftci C, Patrick K, Griswold WG (2019) Personal pollution monitoring: mobile real-time air quality in daily life. Pers Ubiquit Comput 23(2):309–328CrossRef
29.
go back to reference Dutta J, Chowdhury C, Roy S, Middya AI, Gazi F (2017) Towards smart city: sensing air quality in city based on opportunistic crowd-sensing. In: Proceedings of the 18th international conference on distributed computing and networking pp. 1–6 Dutta J, Chowdhury C, Roy S, Middya AI, Gazi F (2017) Towards smart city: sensing air quality in city based on opportunistic crowd-sensing. In: Proceedings of the 18th international conference on distributed computing and networking pp. 1–6
30.
go back to reference Dey MR, Satapathy U, Bhanse P, Mohanta BK, Jena D (2019) Magtrack: detecting road surface condition using smartphone sensors and machine learning. In: IEEE TENCON. IEEE, pp. 2485–2489 Dey MR, Satapathy U, Bhanse P, Mohanta BK, Jena D (2019) Magtrack: detecting road surface condition using smartphone sensors and machine learning. In: IEEE TENCON. IEEE, pp. 2485–2489
31.
go back to reference Yi C-W, Chuang Y-T, Nian C-S (2015) Toward crowdsourcing-based road pavement monitoring by mobile sensing technologies. IEEE Trans Intell Transp Syst 16(4):1905–1917CrossRef Yi C-W, Chuang Y-T, Nian C-S (2015) Toward crowdsourcing-based road pavement monitoring by mobile sensing technologies. IEEE Trans Intell Transp Syst 16(4):1905–1917CrossRef
32.
go back to reference Allouch A, Koubâa A, Abbes T, Ammar A (2017) Roadsense: Smartphone application to estimate road conditions using accelerometer and gyroscope. IEEE Sensors J 17(13):4231–4238CrossRef Allouch A, Koubâa A, Abbes T, Ammar A (2017) Roadsense: Smartphone application to estimate road conditions using accelerometer and gyroscope. IEEE Sensors J 17(13):4231–4238CrossRef
33.
go back to reference Bose B, Dutta J, Ghosh S, Pramanick P, Roy S (2018) D &rsense: Detection of driving patterns and road anomalies. In: 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU). IEEE, pp. 1–7 Bose B, Dutta J, Ghosh S, Pramanick P, Roy S (2018) D &rsense: Detection of driving patterns and road anomalies. In: 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU). IEEE, pp. 1–7
34.
go back to reference Vij D, Aggarwal N (2018) Smartphone based traffic state detection using acoustic analysis and crowdsourcing. Appl Acoust 138:80–91CrossRef Vij D, Aggarwal N (2018) Smartphone based traffic state detection using acoustic analysis and crowdsourcing. Appl Acoust 138:80–91CrossRef
35.
go back to reference Alam MY, Imam S, Anurag H, Saha S, Nandi S, Saha M (2018) Lisense: Monitoring city street lighting during night using smartphone sensors. In: 2018 IEEE ICDMW. IEEE, pp. 596–603 Alam MY, Imam S, Anurag H, Saha S, Nandi S, Saha M (2018) Lisense: Monitoring city street lighting during night using smartphone sensors. In: 2018 IEEE ICDMW. IEEE, pp. 596–603
37.
go back to reference Suhag D, Jha V (2023) A comprehensive survey on mobile crowdsensing systems. J Syst Archit 102952 Suhag D, Jha V (2023) A comprehensive survey on mobile crowdsensing systems. J Syst Archit 102952
42.
go back to reference Jin H, Su L, Chen D, Nahrstedt K, Xu J (2015) Quality of information aware incentive mechanisms for mobile crowd sensing systems. In: Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing. [Online]. Available: https://doi.org/10.1145/2746285.2746310 Jin H, Su L, Chen D, Nahrstedt K, Xu J (2015) Quality of information aware incentive mechanisms for mobile crowd sensing systems. In: Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing. [Online]. Available: https://​doi.​org/​10.​1145/​2746285.​2746310
43.
go back to reference Wen Y, Shi J, Zhang Q, Tian X, Huang Z, Yu H, Cheng Y, Shen X (2014) Quality-driven auction-based incentive mechanism for mobile crowd sensing. IEEE Trans Veh Technol 64(9):4203–4214CrossRef Wen Y, Shi J, Zhang Q, Tian X, Huang Z, Yu H, Cheng Y, Shen X (2014) Quality-driven auction-based incentive mechanism for mobile crowd sensing. IEEE Trans Veh Technol 64(9):4203–4214CrossRef
50.
go back to reference Chen C, Wang Y (2013) Sparc: Strategy-proof double auction for mobile participatory sensing. In: 2013 International Conference on Cloud Computing and Big Data. IEEE, pp. 133–140 Chen C, Wang Y (2013) Sparc: Strategy-proof double auction for mobile participatory sensing. In: 2013 International Conference on Cloud Computing and Big Data. IEEE, pp. 133–140
52.
go back to reference Jin H, Su L, Nahrstedt K (2017) Centurion: Incentivizing multi-requester mobile crowd sensing. In: IEEE INFOCOM 2017-IEEE Conference on Computer Communications. IEEE, pp. 1–9 Jin H, Su L, Nahrstedt K (2017) Centurion: Incentivizing multi-requester mobile crowd sensing. In: IEEE INFOCOM 2017-IEEE Conference on Computer Communications. IEEE, pp. 1–9
56.
go back to reference Jia B, Gong H, Zong Z, Zhou T, Baker T, Al-Shamma’a A, Jia Y (2022) An incentive mechanism in expert-decision-based crowdsensing networks. Appl Soft Comput 122:108834CrossRef Jia B, Gong H, Zong Z, Zhou T, Baker T, Al-Shamma’a A, Jia Y (2022) An incentive mechanism in expert-decision-based crowdsensing networks. Appl Soft Comput 122:108834CrossRef
57.
go back to reference Song Z, Ngai E, Ma J, Gong X, Liu Y, Wang W (2014) Incentive mechanism for participatory sensing under budget constraints. In: 2014 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, pp. 3361–3366 Song Z, Ngai E, Ma J, Gong X, Liu Y, Wang W (2014) Incentive mechanism for participatory sensing under budget constraints. In: 2014 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, pp. 3361–3366
58.
go back to reference Chou CT, Bulusu N, Kanhere S et al (2007) Sensing data market. Proceedings of Poster Papers p. 13 Chou CT, Bulusu N, Kanhere S et al (2007) Sensing data market. Proceedings of Poster Papers p. 13
59.
go back to reference Reddy S, Estrin D, Srivastava M (2010) Recruitment framework for participatory sensing data collections. In: International Conference on Pervasive Computing. Springer, pp. 138–155 Reddy S, Estrin D, Srivastava M (2010) Recruitment framework for participatory sensing data collections. In: International Conference on Pervasive Computing. Springer, pp. 138–155
60.
go back to reference Lee J-S, Hoh B (2010) Sell your experiences: a market mechanism based incentive for participatory sensing. In: 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE, pp. 60–68 Lee J-S, Hoh B (2010) Sell your experiences: a market mechanism based incentive for participatory sensing. In: 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE, pp. 60–68
64.
go back to reference Liu Y, Li H, Zhao G, Duan J (2018) Reverse auction based incentive mechanism for location-aware sensing in mobile crowd sensing. In: 2018 IEEE International Conference on Communications (ICC). IEEE, pp. 1–6 Liu Y, Li H, Zhao G, Duan J (2018) Reverse auction based incentive mechanism for location-aware sensing in mobile crowd sensing. In: 2018 IEEE International Conference on Communications (ICC). IEEE, pp. 1–6
65.
go back to reference Li Q, Cao G (2013) Providing privacy-aware incentives for mobile sensing. In 2013 IEEE international conference on pervasive computing and communications (PerCom). IEEE, pp. 76–84 Li Q, Cao G (2013) Providing privacy-aware incentives for mobile sensing. In 2013 IEEE international conference on pervasive computing and communications (PerCom). IEEE, pp. 76–84
67.
go back to reference Zhou R, Zhang R, Wang Y, Tan H, He K (2022) Online incentive mechanism for task offloading with privacy-preserving in UAV-assisted mobile edge computing. In: Proceedings of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing. ACM. [Online]. Available: https://doi.org/10.1145/3492866.3549715 Zhou R, Zhang R, Wang Y, Tan H, He K (2022) Online incentive mechanism for task offloading with privacy-preserving in UAV-assisted mobile edge computing. In: Proceedings of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing. ACM. [Online]. Available: https://​doi.​org/​10.​1145/​3492866.​3549715
68.
go back to reference Luo T, Tan H-P, Xia L (2014) Profit-maximizing incentive for participatory sensing. In: IEEE INFOCOM 2014-IEEE Conference on Computer Communications. IEEE, pp. 127–135 Luo T, Tan H-P, Xia L (2014) Profit-maximizing incentive for participatory sensing. In: IEEE INFOCOM 2014-IEEE Conference on Computer Communications. IEEE, pp. 127–135
69.
go back to reference Koutsopoulos I (2013) Optimal incentive-driven design of participatory sensing systems. In: 2013 Proceedings IEEE INFOCOM. IEEE, pp. 1402–1410 Koutsopoulos I (2013) Optimal incentive-driven design of participatory sensing systems. In: 2013 Proceedings IEEE INFOCOM. IEEE, pp. 1402–1410
70.
go back to reference Zhao B, Tang S, Liu X, Zhang X (2020) Pace: Privacy-preserving and quality-aware incentive mechanism for mobile crowdsensing. IEEE Transactions on Mobile Computing 20(5):1924–1939CrossRef Zhao B, Tang S, Liu X, Zhang X (2020) Pace: Privacy-preserving and quality-aware incentive mechanism for mobile crowdsensing. IEEE Transactions on Mobile Computing 20(5):1924–1939CrossRef
74.
go back to reference Parsons S, Rodriguez-Aguilar JA, Klein M (2011) Auctions and bidding: A guide for computer scientists. ACM Computing Surveys (CSUR) 43(2):1–59CrossRef Parsons S, Rodriguez-Aguilar JA, Klein M (2011) Auctions and bidding: A guide for computer scientists. ACM Computing Surveys (CSUR) 43(2):1–59CrossRef
75.
go back to reference Zhang X, Yang Z, Sun W, Liu Y, Tang S, Xing K, Mao X (2015) Incentives for mobile crowd sensing: A survey. IEEE Communications Surveys & Tutorials 18(1):54–67CrossRef Zhang X, Yang Z, Sun W, Liu Y, Tang S, Xing K, Mao X (2015) Incentives for mobile crowd sensing: A survey. IEEE Communications Surveys & Tutorials 18(1):54–67CrossRef
76.
go back to reference Liu S, Yu Y, Guo L, Yeoh PL, Ni Q, Vucetic B, Li Y (2022) Truthful online double auctions for mobile crowdsourcing: An on-demand service strategy. IEEE Internet of Things Journal 9(17):16,096–16,112 Liu S, Yu Y, Guo L, Yeoh PL, Ni Q, Vucetic B, Li Y (2022) Truthful online double auctions for mobile crowdsourcing: An on-demand service strategy. IEEE Internet of Things Journal 9(17):16,096–16,112
78.
go back to reference Zhang Y, Zhang X (2023) Incentive mechanism with task bundling for mobile crowd sensing. ACM Transactions on Sensor Networks 19(3):1–23 Zhang Y, Zhang X (2023) Incentive mechanism with task bundling for mobile crowd sensing. ACM Transactions on Sensor Networks 19(3):1–23
79.
go back to reference Liu Z, Li K, Zhou X, Zhu N, Li K (2020) Incentive mechanisms for crowdsensing: Motivating users to preprocess data for the crowdsourcer. ACM Transactions on Sensor Networks (TOSN) 16(4):1–24 Liu Z, Li K, Zhou X, Zhu N, Li K (2020) Incentive mechanisms for crowdsensing: Motivating users to preprocess data for the crowdsourcer. ACM Transactions on Sensor Networks (TOSN) 16(4):1–24
Metadata
Title
Truthful double auction based incentive mechanism for participatory sensing systems
Authors
Asif Iqbal Middya
Sarbani Roy
Publication date
20-04-2024
Publisher
Springer US
Published in
Peer-to-Peer Networking and Applications / Issue 4/2024
Print ISSN: 1936-6442
Electronic ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-024-01681-3

Other articles of this Issue 4/2024

Peer-to-Peer Networking and Applications 4/2024 Go to the issue

Premium Partner