Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

22-09-2020 | Regular Paper | Issue 1/2021

Journal of Visualization 1/2021

TS-Extractor: large graph exploration via subgraph extraction based on topological and semantic information

Journal:
Journal of Visualization > Issue 1/2021
Authors:
Kun Fu, Tingyun Mao, Yang Wang, Daoyu Lin, Yuanben Zhang, Junjian Zhan, Xian Sun, Feng Li
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Exploring large graphs is difficult due to their large size and semantic information such as node attributes. Extracting only a subgraph relevant to the user-specified nodes (called focus nodes) is an effective strategy for exploring a large graph. However, existing approaches following this strategy mainly focus on graph topology and do not fully consider node attributes, resulting in the lack of clear semantics in the extracted subgraphs. In this paper, we propose a novel approach called TS-Extractor that can extract a relevant subgraph around the user-selected focus nodes to help the user explore the large graph from a local perspective. By combining the graph topology and the user-selected node attributes, TS-Extractor can extract and visualize a connected subgraph that contains as many nodes sharing the same/similar attribute values with the focus nodes as possible, thereby providing the user with clear semantics. Based on TS-Extractor, we develop a Web-based graph exploration system that allows users to interactively extract, analyze and expand subgraphs. Through two case studies and a user study, we demonstrate the usability and effectiveness of TS-Extractor.

Graphic abstract

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 1/2021

Journal of Visualization 1/2021 Go to the issue

Premium Partner

    Image Credits