Skip to main content
Top

2016 | OriginalPaper | Chapter

Tumor Lesion Segmentation from 3D PET Using a Machine Learning Driven Active Surface

Authors : Payam Ahmadvand, Nóirín Duggan, François Bénard, Ghassan Hamarneh

Published in: Machine Learning in Medical Imaging

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the key challenges facing wider adoption of positron emission tomography (PET) as an imaging biomarker of disease is the development of reproducible quantitative image interpretation tools. Quantifying changes in tumor tissue, due to disease progression or treatment regimen, often requires accurate and reproducible delineation of lesions. Lesion segmentation is necessary for measuring tumor proliferation/shrinkage and radiotracer-uptake to quantify tumor metabolism. In this paper, we develop a fully automatic method for lesion delineation, which does not require user-initialization or parameter-tweaking, to segment novel PET images. To achieve this, we train a machine learning system on anatomically and physiologically meaningful imaging cues, to distinguish normal organ activity from tumorous lesion activity. The inferred lesion likelihoods are then used to guide a convex segmentation model, guaranteeing reproducible results. We evaluate our approach on datasets from The Cancer Imaging Archive trained on data from the Quantitative Imaging Network challenge that were delineated by multiple users. Our method not only produces more accurate segmentation than state-of-the art segmentation results, but does so without any user interaction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
A method is described as non-reproducible when its results are dependent on image-specific parameter tuning/initialization or other user interaction.
 
Literature
1.
go back to reference Abdoli, M., et al.: Contourlet-based active contour model for PET image segmentation. Med. Phys. 40(8), 082507: 1–082507: 12 (2013)CrossRef Abdoli, M., et al.: Contourlet-based active contour model for PET image segmentation. Med. Phys. 40(8), 082507: 1–082507: 12 (2013)CrossRef
2.
go back to reference Bagci, U., et al.: Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images. Med. Image Anal. 17(8), 929–945 (2013)CrossRef Bagci, U., et al.: Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images. Med. Image Anal. 17(8), 929–945 (2013)CrossRef
3.
go back to reference Bi, L., Kim, J., Feng, D., Fulham, M.: Multi-stage thresholded region classification for whole-body PET-CT lymphoma studies. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 569–576. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10404-1_71 Bi, L., Kim, J., Feng, D., Fulham, M.: Multi-stage thresholded region classification for whole-body PET-CT lymphoma studies. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 569–576. Springer, Heidelberg (2014). doi:10.​1007/​978-3-319-10404-1_​71
4.
go back to reference Bresson, X., et al.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)MathSciNetCrossRef Bresson, X., et al.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)MathSciNetCrossRef
5.
go back to reference Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)CrossRef Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)CrossRef
6.
go back to reference Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 28(1), 45–62 (2002)CrossRef Clausi, D.A.: An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 28(1), 45–62 (2002)CrossRef
7.
go back to reference Cui, H., et al.: Primary lung tumor segmentation from PET-CT volumes with spatial-topological constraint. Int. J. Comput. Assist. Radiol. Surg. 11(1), 19–29 (2015)CrossRef Cui, H., et al.: Primary lung tumor segmentation from PET-CT volumes with spatial-topological constraint. Int. J. Comput. Assist. Radiol. Surg. 11(1), 19–29 (2015)CrossRef
8.
go back to reference Dewalle-Vignion, A., et al.: A new method for volume segmentation of PET images, based on possibility theory. IEEE Trans. Med. Imag. 30(2), 409–423 (2011)CrossRef Dewalle-Vignion, A., et al.: A new method for volume segmentation of PET images, based on possibility theory. IEEE Trans. Med. Imag. 30(2), 409–423 (2011)CrossRef
9.
go back to reference Fedorov, A., et al.: DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research. PeerJ 4, e2057 (2016)CrossRef Fedorov, A., et al.: DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research. PeerJ 4, e2057 (2016)CrossRef
10.
go back to reference Foster, B., et al.: Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models. IEEE Trans. Biomed. Eng. 61(3), 711–724 (2014)CrossRef Foster, B., et al.: Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models. IEEE Trans. Biomed. Eng. 61(3), 711–724 (2014)CrossRef
11.
go back to reference Foster, B., et al.: A review on segmentation of positron emission tomography images. Comput. Biol. Med. 50, 76–96 (2014)CrossRef Foster, B., et al.: A review on segmentation of positron emission tomography images. Comput. Biol. Med. 50, 76–96 (2014)CrossRef
12.
go back to reference Haralick, R.M., et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)MathSciNetCrossRef Haralick, R.M., et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)MathSciNetCrossRef
13.
go back to reference Hatt, M., et al.: Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int. J. Radiat. Oncol. Biol. Phys. 77(1), 301–308 (2010)CrossRef Hatt, M., et al.: Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int. J. Radiat. Oncol. Biol. Phys. 77(1), 301–308 (2010)CrossRef
14.
go back to reference Ju, W., et al.: Random walk and graph cut for co-segmentation of lung tumor on PET-CT images. IEEE Trans. Image Process. 24(12), 5854–5867 (2015)MathSciNetCrossRef Ju, W., et al.: Random walk and graph cut for co-segmentation of lung tumor on PET-CT images. IEEE Trans. Image Process. 24(12), 5854–5867 (2015)MathSciNetCrossRef
15.
go back to reference Kumar, A., et al.: A graph-based approach for the retrieval of multi-modality medical images. Med. Image Anal. 18(2), 330–342 (2014)CrossRef Kumar, A., et al.: A graph-based approach for the retrieval of multi-modality medical images. Med. Image Anal. 18(2), 330–342 (2014)CrossRef
16.
go back to reference Lapuyade-Lahorgue, J., et al.: Speqtacle: an automated generalized fuzzy c-means algorithm for tumor delineation in PET. Med. Phys. 42(10), 5720–5734 (2015)CrossRef Lapuyade-Lahorgue, J., et al.: Speqtacle: an automated generalized fuzzy c-means algorithm for tumor delineation in PET. Med. Phys. 42(10), 5720–5734 (2015)CrossRef
17.
go back to reference Layer, T., et al.: PET image segmentation using a Gaussian mixture model and Markov random fields. EJNMMI Phys. 2(1), 1–15 (2015)CrossRef Layer, T., et al.: PET image segmentation using a Gaussian mixture model and Markov random fields. EJNMMI Phys. 2(1), 1–15 (2015)CrossRef
18.
go back to reference Lelandais, B., Gardin, I., Mouchard, L., Vera, P., Ruan, S.: Segmentation of biological target volumes on multi-tracer PET images based on information fusion for achieving dose painting in radiotherapy. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 545–552. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33415-3_67 CrossRef Lelandais, B., Gardin, I., Mouchard, L., Vera, P., Ruan, S.: Segmentation of biological target volumes on multi-tracer PET images based on information fusion for achieving dose painting in radiotherapy. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 545–552. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-33415-3_​67 CrossRef
19.
go back to reference Liaw, A., et al.: Classification and regression by randomForest. R News 2(3), 18–22 (2002)MathSciNet Liaw, A., et al.: Classification and regression by randomForest. R News 2(3), 18–22 (2002)MathSciNet
20.
go back to reference Nestle, U., et al.: Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J. Nucl. Med. 46(8), 1342–1348 (2005) Nestle, U., et al.: Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J. Nucl. Med. 46(8), 1342–1348 (2005)
21.
go back to reference Soh, L.K., et al.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999)CrossRef Soh, L.K., et al.: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37(2), 780–795 (1999)CrossRef
22.
go back to reference Song, Q., et al.: Optimal co-segmentation of tumor in PET-CT images with context information. IEEE Trans. Med. Imag. 32(9), 1685–1697 (2013)CrossRef Song, Q., et al.: Optimal co-segmentation of tumor in PET-CT images with context information. IEEE Trans. Med. Imag. 32(9), 1685–1697 (2013)CrossRef
23.
go back to reference Yu, H., et al.: Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. Int. J. Radiat. Oncol. Biol. Phys. 75(2), 618–625 (2009)CrossRef Yu, H., et al.: Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. Int. J. Radiat. Oncol. Biol. Phys. 75(2), 618–625 (2009)CrossRef
24.
go back to reference Zeng, Z., et al.: Unsupervised tumour segmentation in PET using local and global intensity-fitting active surface and alpha matting. Comput. Biol. Med. 43(10), 1530–1544 (2013)CrossRef Zeng, Z., et al.: Unsupervised tumour segmentation in PET using local and global intensity-fitting active surface and alpha matting. Comput. Biol. Med. 43(10), 1530–1544 (2013)CrossRef
Metadata
Title
Tumor Lesion Segmentation from 3D PET Using a Machine Learning Driven Active Surface
Authors
Payam Ahmadvand
Nóirín Duggan
François Bénard
Ghassan Hamarneh
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-47157-0_33

Premium Partner