Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

31-10-2021 | Original Research | Issue 18/2021

Cellulose 18/2021

Tuning physical, mechanical and barrier properties of cellulose nanofibril films through film drying techniques coupled with thermal compression

Journal:
Cellulose > Issue 18/2021
Authors:
Ikramul Hasan, Jinwu Wang, Mehdi Tajvidi
Important notes

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s10570-021-04269-9.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Cellulose nanofibrils (CNFs) have already been proved to be a potential candidate as one of the next-generation renewable and sustainable packaging materials. However, the mechanical and barrier properties of CNF films are not yet up to the mark for certain applications, especially at higher relative humidity. Those properties can be controlled by the degree of fibrillation of fibers and drying methods of films. Here we prepared CNF films from CNF suspensions with two different degrees of fibrillation- standard CNF (90% fine) and high-fine CNF (97% fine) by casting and filtration. These were dried in four different ways (air, oven, heat gun, and hot press drying) to better understand how these methods affect the physical, mechanical as well as oil, water vapor and oxygen barrier properties of the films. The CNF films made by hot press drying showed the highest tensile strength (98.82 MPa) and lowest water vapor permeability (13.91 g.mm/m2 day kPa). Hot press compaction on the dried films further improved the tensile strength by 13.1% and reduced the water vapor and oxygen permeability by 22.3% and 43%, respectively. The average value of oxygen permeability after hot press compaction was found to be 403.2 cc µm/m2 day atm, which can be considered as high oxygen barrier at 80% relative humidity. All prepared films showed maximum oil resistance value with kit number ‘12’, regardless of their preparation techniques. The result of folding a representative CNF film showed that the CNF film retained its oxygen barrier properties after a single line folding, but failed after two crossline folding.

Graphic abstract

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 18/2021

Cellulose 18/2021 Go to the issue