Skip to main content
Top
Published in:

01-12-2020 | Original Paper

Tweets can tell: activity recognition using hybrid gated recurrent neural networks

Authors: Renhao Cui, Gagan Agrawal, Rajiv Ramnath

Published in: Social Network Analysis and Mining | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents techniques to detect the “offline” activity (such as dining, shopping, or entertainment) a person is engaged in when she is tweeting , in order to create a dynamic profile of the user, for uses such as better targeting of advertisements. To this end, we present a hybrid gated recurrent neural network (GRNN)-based model for rich contextual learning. Specifically, the study and construction of the hybrid model are applied to two types of GRNNs, namely LSTM and GRU networks. In the process, we study the effects of applying and combining multiple contextual modeling methods with different contextual features. Our hybrid model outperforms a set of baselines and state-of-the-art methods. Finally, this paper presents an orthogonal validation using a real-world application. Our model generates offline activity analysis for the followers of several well-known accounts, and the result is quite representative of the expected characteristics of these accounts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Source code is available at https://​goo.​gl/​o9dsBh.
 
Literature
go back to reference Atig MF, Cassel S (2014) Activity profiles in online social media. In: 2014 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM). IEEE, pp 850–855 Atig MF, Cassel S (2014) Activity profiles in online social media. In: 2014 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM). IEEE, pp 850–855
go back to reference Bakshy E, Hofman JM (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the fourth ACM international conference on Web search and data mining. ACM, pp 65–74 Bakshy E, Hofman JM (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the fourth ACM international conference on Web search and data mining. ACM, pp 65–74
go back to reference Bansal T, Belanger D (2016) Ask the GRU: multi-task learning for deep text recommendations. In: Proceedings of the 10th ACM conference on recommender systems. ACM, pp 107–114 Bansal T, Belanger D (2016) Ask the GRU: multi-task learning for deep text recommendations. In: Proceedings of the 10th ACM conference on recommender systems. ACM, pp 107–114
go back to reference Benevenuto F, Rodrigues T (2009) Characterizing user behavior in online social networks. In: Proceedings of the 9th ACM SIGCOMM conference on internet measurement conference. ACM, pp 49–62 Benevenuto F, Rodrigues T (2009) Characterizing user behavior in online social networks. In: Proceedings of the 9th ACM SIGCOMM conference on internet measurement conference. ACM, pp 49–62
go back to reference Cha M, Haddadi H (2010) Measuring user influence in twitter: the million follower fallacy. ICWSM 10(10–17):30 Cha M, Haddadi H (2010) Measuring user influence in twitter: the million follower fallacy. ICWSM 10(10–17):30
go back to reference Cho K, Van Merriënboer B (2014) Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:14061078 Cho K, Van Merriënboer B (2014) Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:​14061078
go back to reference Cui R, Agrawal G (2019) Tweets can tell: activity recognition using hybrid long short-term memory model. In: Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining, pp 164–167 Cui R, Agrawal G (2019) Tweets can tell: activity recognition using hybrid long short-term memory model. In: Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining, pp 164–167
go back to reference Dhingra B, Zhou Z (2016) Tweet2vec: character-based distributed representations for social media. arXiv preprint arXiv:160503481 Dhingra B, Zhou Z (2016) Tweet2vec: character-based distributed representations for social media. arXiv preprint arXiv:​160503481
go back to reference Dickinson T, Fernandez M et al (2016) Identifying important life events from twitter using semantic and syntactic patterns. In: WWW/Internet conference proceedings 2016, IADIS Press, pp 143–150 Dickinson T, Fernandez M et al (2016) Identifying important life events from twitter using semantic and syntactic patterns. In: WWW/Internet conference proceedings 2016, IADIS Press, pp 143–150
go back to reference Gimpel K, Schneider N (2010) Part-of-speech tagging for twitter: annotation, features, and experiments. Technical report, Carnegie-Mellon University, Pittsburgh, PA, School of Computer Science Gimpel K, Schneider N (2010) Part-of-speech tagging for twitter: annotation, features, and experiments. Technical report, Carnegie-Mellon University, Pittsburgh, PA, School of Computer Science
go back to reference Gu X, Yang H (2018) Profiling web users using big data. Soc Netw Anal Min 8(1):24CrossRef Gu X, Yang H (2018) Profiling web users using big data. Soc Netw Anal Min 8(1):24CrossRef
go back to reference Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780CrossRef
go back to reference Kapanipathi P, Jain P (2014) User interests identification on twitter using a hierarchical knowledge base. In: European semantic web conference. Springer, pp 99–113 Kapanipathi P, Jain P (2014) User interests identification on twitter using a hierarchical knowledge base. In: European semantic web conference. Springer, pp 99–113
go back to reference Lee WJ, Oh KJ (2014) User profile extraction from twitter for personalized news recommendation. In: 2014 16th international conference on advanced communication technology (ICACT). IEEE, pp 779–783 Lee WJ, Oh KJ (2014) User profile extraction from twitter for personalized news recommendation. In: 2014 16th international conference on advanced communication technology (ICACT). IEEE, pp 779–783
go back to reference Lian D, Xie X (2011) Collaborative activity recognition via check-in history. In: Proceedings of the 3rd ACM SIGSPATIAL international workshop on location-based social networks. ACM, pp 45–48 Lian D, Xie X (2011) Collaborative activity recognition via check-in history. In: Proceedings of the 3rd ACM SIGSPATIAL international workshop on location-based social networks. ACM, pp 45–48
go back to reference Liao D, Liu W (2018) Predicting activity and location with multi-task context aware recurrent neural network. In: IJCAI, pp 3435–3441 Liao D, Liu W (2018) Predicting activity and location with multi-task context aware recurrent neural network. In: IJCAI, pp 3435–3441
go back to reference Liu Y, Sun C (2016) Learning natural language inference using bidirectional LSTM model and inner-attention. arXiv preprint arXiv:160509090 Liu Y, Sun C (2016) Learning natural language inference using bidirectional LSTM model and inner-attention. arXiv preprint arXiv:​160509090
go back to reference Li J, Xu H (2016) Tweet modeling with lstm recurrent neural networks for hashtag recommendation. In: 2016 international joint conference on neural networks (IJCNN). IEEE, pp 1570–1577 Li J, Xu H (2016) Tweet modeling with lstm recurrent neural networks for hashtag recommendation. In: 2016 international joint conference on neural networks (IJCNN). IEEE, pp 1570–1577
go back to reference Malmgren RD et al. (2009) Characterizing individual communication patterns. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining Malmgren RD et al. (2009) Characterizing individual communication patterns. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining
go back to reference Mehrotra R, Sanner S (2013) Improving lda topic models for microblogs via tweet pooling and automatic labeling. In: Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. ACM, pp 889–892 Mehrotra R, Sanner S (2013) Improving lda topic models for microblogs via tweet pooling and automatic labeling. In: Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. ACM, pp 889–892
go back to reference Michelson M, Macskassy SA (2010) Discovering users’ topics of interest on twitter: a first look. In: Proceedings of the fourth workshop on analytics for noisy unstructured text data. ACM, pp 73–80 Michelson M, Macskassy SA (2010) Discovering users’ topics of interest on twitter: a first look. In: Proceedings of the fourth workshop on analytics for noisy unstructured text data. ACM, pp 73–80
go back to reference Mislove A, Viswanath B (2010) You are who you know: inferring user profiles in online social networks. In: Proceedings of the third ACM international conference on web search and data mining, ACM, pp 251–260 Mislove A, Viswanath B (2010) You are who you know: inferring user profiles in online social networks. In: Proceedings of the third ACM international conference on web search and data mining, ACM, pp 251–260
go back to reference Noulas A, Scellato S (2011) An empirical study of geographic user activity patterns in foursquare. ICwSM 11:70–573 Noulas A, Scellato S (2011) An empirical study of geographic user activity patterns in foursquare. ICwSM 11:70–573
go back to reference Owoputi O, O’Connor B (2013) Improved part-of-speech tagging for online conversational text with word clusters. Association for Computational Linguistics, Stroudsburg Owoputi O, O’Connor B (2013) Improved part-of-speech tagging for online conversational text with word clusters. Association for Computational Linguistics, Stroudsburg
go back to reference Pennington J, Socher R (2014) GloVe: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543 Pennington J, Socher R (2014) GloVe: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543
go back to reference Quercia D, Kosinski M (2011) Our twitter profiles, our selves: predicting personality with twitter. In: 2011 IEEE third international conference on privacy, security, risk and trust and 2011 IEEE third international conference on social computing. IEEE, pp 180–185 Quercia D, Kosinski M (2011) Our twitter profiles, our selves: predicting personality with twitter. In: 2011 IEEE third international conference on privacy, security, risk and trust and 2011 IEEE third international conference on social computing. IEEE, pp 180–185
go back to reference Rao D, Yarowsky D (2010) Classifying latent user attributes in twitter. In: Proceedings of the 2nd international workshop on search and mining user-generated contents. ACM, pp 37–44 Rao D, Yarowsky D (2010) Classifying latent user attributes in twitter. In: Proceedings of the 2nd international workshop on search and mining user-generated contents. ACM, pp 37–44
go back to reference Rozental A, Fleischer D (2018) Amobee at SemEval-2018 task 1: GRU neural network with a CNN attention mechanism for sentiment classification. arXiv preprint arXiv:180404380 Rozental A, Fleischer D (2018) Amobee at SemEval-2018 task 1: GRU neural network with a CNN attention mechanism for sentiment classification. arXiv preprint arXiv:​180404380
go back to reference Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process 45(11):2673–2681CrossRef Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process 45(11):2673–2681CrossRef
go back to reference Song Y, Lu Z (2013) Collaborative boosting for activity classification in microblogs. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 482–490 Song Y, Lu Z (2013) Collaborative boosting for activity classification in microblogs. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 482–490
go back to reference Tuna T, Akbas E (2016) User characterization for online social networks. Soc Netw Anal Min 6(1):104CrossRef Tuna T, Akbas E (2016) User characterization for online social networks. Soc Netw Anal Min 6(1):104CrossRef
go back to reference Vaswani A, Shazeer N (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008 Vaswani A, Shazeer N (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008
go back to reference Vosoughi S, Vijayaraghavan P (2016) Tweet2Vec: learning tweet embeddings using character-level CNN-LSTM encoder-decoder. In: Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 1041–1044 Vosoughi S, Vijayaraghavan P (2016) Tweet2Vec: learning tweet embeddings using character-level CNN-LSTM encoder-decoder. In: Proceedings of the 39th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 1041–1044
go back to reference Wang Y, Huang M (2016) Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 conference on empirical methods in natural language processing, pp 606–615 Wang Y, Huang M (2016) Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 conference on empirical methods in natural language processing, pp 606–615
go back to reference Wang X, Liu Y (2015) Predicting polarities of tweets by composing word embeddings with long short-term memory. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (volume 1: long papers), vol 1, pp 1343–1353 Wang X, Liu Y (2015) Predicting polarities of tweets by composing word embeddings with long short-term memory. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (volume 1: long papers), vol 1, pp 1343–1353
go back to reference Weerkamp W, De Rijke M (2012) Activity prediction: a twitter-based exploration. In: SIGIR workshop on time-aware information access Weerkamp W, De Rijke M (2012) Activity prediction: a twitter-based exploration. In: SIGIR workshop on time-aware information access
go back to reference Yang D, Zhang D (2015) Modeling user activity preference by leveraging user spatial temporal characteristics in lbsns. IEEE Trans Syst Man Cybern Syst 45(1):129–142CrossRef Yang D, Zhang D (2015) Modeling user activity preference by leveraging user spatial temporal characteristics in lbsns. IEEE Trans Syst Man Cybern Syst 45(1):129–142CrossRef
go back to reference Shuang-Hong Y et al (2014) Large-scale high-precision topic modeling on twitter. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining Shuang-Hong Y et al (2014) Large-scale high-precision topic modeling on twitter. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining
go back to reference Yen AZ, Huang HH (2018) Detecting personal life events from twitter by multi-task lstm. In: Companion of the web conference 2018 on the web conference 2018, international world wide web conferences steering committee, pp 21–22 Yen AZ, Huang HH (2018) Detecting personal life events from twitter by multi-task lstm. In: Companion of the web conference 2018 on the web conference 2018, international world wide web conferences steering committee, pp 21–22
go back to reference Ye J, Zhu Z (2013) What’s your next move: user activity prediction in location-based social networks. In: Proceedings of the 2013 SIAM international conference on data mining. SIAM, pp 171–179 Ye J, Zhu Z (2013) What’s your next move: user activity prediction in location-based social networks. In: Proceedings of the 2013 SIAM international conference on data mining. SIAM, pp 171–179
go back to reference Yuan S, Wu X (2018) Incorporating pre-training in long short-term memory networks for tweet classification. Soc Netw Anal Min 8(1):52CrossRef Yuan S, Wu X (2018) Incorporating pre-training in long short-term memory networks for tweet classification. Soc Netw Anal Min 8(1):52CrossRef
go back to reference Zhang Z, Robinson D (2018) Detecting hate speech on twitter using a convolution-GRU based deep neural network. In: European semantic web conference. Springer, pp 745–760 Zhang Z, Robinson D (2018) Detecting hate speech on twitter using a convolution-GRU based deep neural network. In: European semantic web conference. Springer, pp 745–760
go back to reference Zhou Q, Wen L (2016) A hierarchical lstm model for joint tasks. In: China national conference on Chinese computational linguistics. Springer, pp 324–335 Zhou Q, Wen L (2016) A hierarchical lstm model for joint tasks. In: China national conference on Chinese computational linguistics. Springer, pp 324–335
Metadata
Title
Tweets can tell: activity recognition using hybrid gated recurrent neural networks
Authors
Renhao Cui
Gagan Agrawal
Rajiv Ramnath
Publication date
01-12-2020
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2020
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-020-0628-0

Premium Partner