Skip to main content
Top
Published in:

06-07-2024 | Research

Twin Bounded Support Vector Machine with Capped Pinball Loss

Authors: Huiru Wang, Xiaoqing Hong, Siyuan Zhang

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to obtain a more robust and sparse classifier, in this paper, we propose a novel classifier termed as twin bounded support vector machine with capped pinball loss (CPin-TBSVM), which has the excellent properties of being insensitive to feature and label noise. Given that the proposed model is non-convex, we use the convex-concave procedure algorithm (CCCP) to solve a series of two smaller-sized quadratic programming problems to find the optimal solution. In the process of solving the iterative subproblem, the dual coordinate descent method (DCDM) is used for speeding up solving optimization problems. Moreover, we analyze its theoretical properties, including that the capped pinball loss satisfies Bayes’ rule and CPin-TBSVM has certain noise insensitivity and sparsity. The properties are verified on an artificial dataset as well. The numerical experiment is conducted on 24 UCI datasets and the results are compared with four other models which include SVM, TSVM, Pin-GTSVM and TPin-TSVM. The results show that the proposed CPin-TBSVM has a better classification effect and noise insensitivity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Vapnik VN. The nature of statistical learning theory. Berlin: Springer; 1995.CrossRef Vapnik VN. The nature of statistical learning theory. Berlin: Springer; 1995.CrossRef
2.
go back to reference Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. ACM Press. 1992;10(1145/130385): 130401. Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. ACM Press. 1992;10(1145/130385): 130401.
15.
go back to reference Anagha P, Balasundaram S. On twin bounded support vector machine with pinball loss. In: Advanced Machine Intelligence and Signal Processing, Springer, 2022; pp 177–190 Anagha P, Balasundaram S. On twin bounded support vector machine with pinball loss. In: Advanced Machine Intelligence and Signal Processing, Springer, 2022; pp 177–190
Metadata
Title
Twin Bounded Support Vector Machine with Capped Pinball Loss
Authors
Huiru Wang
Xiaoqing Hong
Siyuan Zhang
Publication date
06-07-2024
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10307-y

Premium Partner