Skip to main content
Top
Published in: Neural Computing and Applications 8/2021

08-08-2020 | Original Article

Twin-parametric margin support vector machine with truncated pinball loss

Authors: Huiru Wang, Yitian Xu, Zhijian Zhou

Published in: Neural Computing and Applications | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we propose a novel classifier termed as twin-parametric margin support vector machine with truncated pinball loss (TPin-TSVM), which is motivated by the twin-parametric margin support vector machine (TPMSVM). The proposed TPin-TSVM has the following characteristics. Firstly, it can preserve both sparsity and feature noise insensitivity simultaneously, because it deals with the quantile distance which makes it less sensitive to noises, and most of the correctly classified samples are given equal penalties which makes it have the precious sparsity. Secondly, it is a non-differentiable non-convex optimization problem, we adopt the popular and effective concave–convex procedure (CCCP) to solve it. In each iteration of CCCP, the TPMSVM is utilized as a core of our TPin-TSVM, because it determines two nonparallel hyperplanes by solving two smaller sized quadratic programming problems, which greatly improves the computational speed. Thirdly, we investigate its theoretical properties of noise insensitivity and sparsity, and the proposed TPin-TSVM realizes the between-class distance maximization, within-class scatter and misclassification error minimization together. The experiments on two artificial datasets also verify the properties. We perform numerical experiments on thirty-five benchmark datasets to investigate the validity of our proposed algorithm. Experimental results indicate that our algorithm yields the comparable generalization performance compared with three state-of-the-art algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Vapnik V (1995) The nature of statistical learning theory. Springer, New YorkCrossRef Vapnik V (1995) The nature of statistical learning theory. Springer, New YorkCrossRef
2.
go back to reference Sharan RV, Moir TJ (2015) Noise robust audio surveillance using reduced spectrogram image feature and one-against-all SVM. Neurocomputing 158:90–99CrossRef Sharan RV, Moir TJ (2015) Noise robust audio surveillance using reduced spectrogram image feature and one-against-all SVM. Neurocomputing 158:90–99CrossRef
3.
go back to reference Nayak RK, Mishra D, Rath AK (2019) An optimized SVM-k-NN currency exchange forecasting model for Indian currency market. Neural Comput Appl 31:2995–3021CrossRef Nayak RK, Mishra D, Rath AK (2019) An optimized SVM-k-NN currency exchange forecasting model for Indian currency market. Neural Comput Appl 31:2995–3021CrossRef
4.
go back to reference Huang X, Shi L, Suykens JAK (2014) Support vector machine classifier with pinball loss. IEEE Trans Pattern Anal Mach Intell 36:984–997CrossRef Huang X, Shi L, Suykens JAK (2014) Support vector machine classifier with pinball loss. IEEE Trans Pattern Anal Mach Intell 36:984–997CrossRef
5.
go back to reference Xu Y, Yang Z, Pan X (2017) A novel twin support-vector machine with pinball loss. IEEE Trans Neural Netw Learn Syst 28:359–370MathSciNetCrossRef Xu Y, Yang Z, Pan X (2017) A novel twin support-vector machine with pinball loss. IEEE Trans Neural Netw Learn Syst 28:359–370MathSciNetCrossRef
6.
go back to reference Reshma RNK, Pal A, Chandra S (2018) Generalized pinball loss SVMs. Neurocomputing 322:151–165CrossRef Reshma RNK, Pal A, Chandra S (2018) Generalized pinball loss SVMs. Neurocomputing 322:151–165CrossRef
7.
go back to reference Tanveer M, Sharma A, Suganthan PN (2019) General twin support vector machine with pinball loss function. Inf Sci 494:311–327MathSciNetCrossRef Tanveer M, Sharma A, Suganthan PN (2019) General twin support vector machine with pinball loss function. Inf Sci 494:311–327MathSciNetCrossRef
8.
go back to reference Shen X, Niu L, Qi Z, Tian Y (2017) Support vector machine classifier with truncated pinball loss. Pattern Recognit 68:199–210CrossRef Shen X, Niu L, Qi Z, Tian Y (2017) Support vector machine classifier with truncated pinball loss. Pattern Recognit 68:199–210CrossRef
9.
go back to reference Yuille A, Rangarajan A (2003) The concave–convex procedure. Neural Comput 15(4):915–936CrossRef Yuille A, Rangarajan A (2003) The concave–convex procedure. Neural Comput 15(4):915–936CrossRef
10.
go back to reference Lipp T, Boyd S (2014) Variations and extension of the convex–concave procedure. Optim Eng 1–25 Lipp T, Boyd S (2014) Variations and extension of the convex–concave procedure. Optim Eng 1–25
11.
go back to reference Jayadeva Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29:905–910CrossRef Jayadeva Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29:905–910CrossRef
12.
go back to reference Tomar D, Agarwal S (2015) Twin support vector machine: a review from 2007 to 2014. Egypt Inform J 16(1):55–69CrossRef Tomar D, Agarwal S (2015) Twin support vector machine: a review from 2007 to 2014. Egypt Inform J 16(1):55–69CrossRef
13.
go back to reference Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36:7535–7543CrossRef Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36:7535–7543CrossRef
14.
go back to reference Khemchandani R, Saigal P, Chandra S (2016) Improvements on \(\nu\)-twin support vector machine. Neural Netw 79:97–107CrossRef Khemchandani R, Saigal P, Chandra S (2016) Improvements on \(\nu\)-twin support vector machine. Neural Netw 79:97–107CrossRef
15.
go back to reference Parastalooi N, Amiri A, Aliheidari P (2016) Modified twin support vector regression. Neurocomputing 211:84–97CrossRef Parastalooi N, Amiri A, Aliheidari P (2016) Modified twin support vector regression. Neurocomputing 211:84–97CrossRef
16.
go back to reference López J, Maldonado S (2018) Robust twin support vector regression via second-order cone programming. Knowl Based Syst 152:83–93CrossRef López J, Maldonado S (2018) Robust twin support vector regression via second-order cone programming. Knowl Based Syst 152:83–93CrossRef
17.
go back to reference Mello AR, Stemmer MR, Koerich AL (2020) Incremental and decremental fuzzy bounded twin support vector machine. Inf Sci 526:20–38MathSciNetCrossRef Mello AR, Stemmer MR, Koerich AL (2020) Incremental and decremental fuzzy bounded twin support vector machine. Inf Sci 526:20–38MathSciNetCrossRef
18.
go back to reference Richhariya B, Tanveer M (2020) A reduced universum twin support vector machine for class imbalance learning. Pattern Recognit 102:107150CrossRef Richhariya B, Tanveer M (2020) A reduced universum twin support vector machine for class imbalance learning. Pattern Recognit 102:107150CrossRef
19.
go back to reference Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognit 44:2678–2692CrossRef Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognit 44:2678–2692CrossRef
20.
go back to reference Rastogi Née Khemchandani R, Saigal P, Chandra S (2018) Angle-based twin parametric-margin support vector machine for pattern classification. Knowl-Based Syst 139:64–77CrossRef Rastogi Née Khemchandani R, Saigal P, Chandra S (2018) Angle-based twin parametric-margin support vector machine for pattern classification. Knowl-Based Syst 139:64–77CrossRef
21.
go back to reference Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, CambridgeCrossRef Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, CambridgeCrossRef
22.
go back to reference Tomar D, Agarwal S (2015) A comparison on multi-class classification methods based on least squares twin support vector machine. Knowl-Based Syst 81:131–147CrossRef Tomar D, Agarwal S (2015) A comparison on multi-class classification methods based on least squares twin support vector machine. Knowl-Based Syst 81:131–147CrossRef
23.
24.
go back to reference Demiar J, Schuurmans D (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7(1):1–30MathSciNet Demiar J, Schuurmans D (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7(1):1–30MathSciNet
25.
go back to reference García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180:2044–2064CrossRef García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180:2044–2064CrossRef
26.
go back to reference Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2010) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(3):1–122CrossRef Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2010) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(3):1–122CrossRef
Metadata
Title
Twin-parametric margin support vector machine with truncated pinball loss
Authors
Huiru Wang
Yitian Xu
Zhijian Zhou
Publication date
08-08-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 8/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05225-7

Other articles of this Issue 8/2021

Neural Computing and Applications 8/2021 Go to the issue

Premium Partner