Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

6. Two-Dimensional Sheets

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Geim and Novoselov synthesized in 2004 single-atom thick carbon sheet graphene and opened the door for research of 2D carbon materials. Graphene and related derivatives called graphynes as well as nanoribbons have unique electronic, optical, and mechanical properties. However, with the prediction of quasi-planar boron clusters and sheets in 1997, I. Boustani also opened the door for the 2D boron sheets research known nowadays as borophene. The synthesis of borophene encouraged researchers to explore the mechanical, optical, magnetic and electronic properties as well as their potential applications in nanotechnology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The population of \(\pi \) system occurs by filling the \(\pi \)-orbitals with valence electrons.
 
2
The distance between the two planes which include the highest and the lowest atomic positions.
 
3
The differentiation dI/dV is the derivative of the tunneling current I over the voltage V.
 
Literature
1.
go back to reference I. Boustani, Systematic LSD investigation on cationic boron clusters: B\(^+_n\)(n=2-14). Int. J. Quantum Chem. 52, 1081–1111 (1994) I. Boustani, Systematic LSD investigation on cationic boron clusters: B\(^+_n\)(n=2-14). Int. J. Quantum Chem. 52, 1081–1111 (1994)
2.
go back to reference I. Boustani, Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of B\(^+_n\)(n=2-14). Phys. Rev. B 55, 16426–16438 (1997) I. Boustani, Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of B\(^+_n\)(n=2-14). Phys. Rev. B 55, 16426–16438 (1997)
3.
go back to reference I. Boustani, New quasi-planar surfaces of bare boron. Surf. Sci. 370, 355–363 (1997) I. Boustani, New quasi-planar surfaces of bare boron. Surf. Sci. 370, 355–363 (1997)
4.
go back to reference I. Boustani, A. Quandt, E. Hernandez, A. Rubio, New boron based nanostructured materials. J. Chem. Phys. 110, 3176–3185 (1999) I. Boustani, A. Quandt, E. Hernandez, A. Rubio, New boron based nanostructured materials. J. Chem. Phys. 110, 3176–3185 (1999)
5.
go back to reference W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965) W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)
6.
go back to reference U. von Barth, L. Hedin, A local exchange-correlation potential for the spin polarized case: I. J. Phys. C 5, 1629–1642 (1972) U. von Barth, L. Hedin, A local exchange-correlation potential for the spin polarized case: I. J. Phys. C 5, 1629–1642 (1972)
7.
go back to reference D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys. Rev. B 51, 12947 (1995) D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys. Rev. B 51, 12947 (1995)
8.
go back to reference O.K. Anderson, Linear methods in band theory. Phys. Rev. B 12, 3060 (1975) O.K. Anderson, Linear methods in band theory. Phys. Rev. B 12, 3060 (1975)
9.
go back to reference N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43 (1993). I. Boustani, A. Quandt, E. Hernandez, A. Rubio, New boron based nanostructured materials. J. Chem. Phys. 110, 3176–3185 (1999) N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43 (1993). I. Boustani, A. Quandt, E. Hernandez, A. Rubio, New boron based nanostructured materials. J. Chem. Phys. 110, 3176–3185 (1999)
10.
go back to reference I. Boustani, A. Quandt, A. Rubio, Boron quasicrystals and boron nanotubes: ab initio study of various B\(_{96}\) isomers. J. Solid State Chem. 154, 269–274 (2000) I. Boustani, A. Quandt, A. Rubio, Boron quasicrystals and boron nanotubes: ab initio study of various B\(_{96}\) isomers. J. Solid State Chem. 154, 269–274 (2000)
11.
go back to reference M.H. Evans, J.D. Joannopoulos, S.T. Pantelides, Electronic and mechanical properties of planar and tubular boron structures. Phys. Rev. B 72, 045434-1 to 045434-6 (2005) M.H. Evans, J.D. Joannopoulos, S.T. Pantelides, Electronic and mechanical properties of planar and tubular boron structures. Phys. Rev. B 72, 045434-1 to 045434-6 (2005)
12.
go back to reference J. Kunstmann, A. Quandt, Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties. Phys. Rev. B 74, 035413-1 to 035413-14 (2006) J. Kunstmann, A. Quandt, Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties. Phys. Rev. B 74, 035413-1 to 035413-14 (2006)
13.
go back to reference I. Cabria, M.J. Lopez, J.A. Alonso, Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets. Nanotechnology 17, 778–785 (2006) I. Cabria, M.J. Lopez, J.A. Alonso, Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets. Nanotechnology 17, 778–785 (2006)
15.
go back to reference K.C. Lau, R. Pandey, Stability and electronic properties of atomistically-engineered 2D boron sheets. J. Phys. Chem. C 111, 2906–2912 (2007) K.C. Lau, R. Pandey, Stability and electronic properties of atomistically-engineered 2D boron sheets. J. Phys. Chem. C 111, 2906–2912 (2007)
16.
go back to reference H. Tang, S. Ismail-Beigi, Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501-1 to 115501-4 (2007) H. Tang, S. Ismail-Beigi, Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501-1 to 115501-4 (2007)
17.
go back to reference C. Özdogan, S. Mukhopadhyay, W. Hayami, Z.B. Güvenc, R. Pandey, I. Boustani, The unusually stable B\(_{100}\) fullerene, structural transitions in boron nanostructures, and a comparative study of \(\alpha \)- and \(\gamma \)-boron and sheets. J. Phys. Chem. C 114, 4362–4375 (2010) C. Özdogan, S. Mukhopadhyay, W. Hayami, Z.B. Güvenc, R. Pandey, I. Boustani, The unusually stable B\(_{100}\) fullerene, structural transitions in boron nanostructures, and a comparative study of \(\alpha \)- and \(\gamma \)-boron and sheets. J. Phys. Chem. C 114, 4362–4375 (2010)
18.
go back to reference T.R. Galeev, Q. Chen, J.-C. Gao, H. Bai, C.-Q. Miao, H.-G. Lu, A.P. Sergeeva, S.-D. Li, A.I. Boldyrev, Deciphering the mystery of hexagon holes in an all-boron graphene \(\alpha \)-sheet. Phys. Chem. Chem. Phys. 13, 11575–11578 (2011) T.R. Galeev, Q. Chen, J.-C. Gao, H. Bai, C.-Q. Miao, H.-G. Lu, A.P. Sergeeva, S.-D. Li, A.I. Boldyrev, Deciphering the mystery of hexagon holes in an all-boron graphene \(\alpha \)-sheet. Phys. Chem. Chem. Phys. 13, 11575–11578 (2011)
19.
go back to reference The 2c-2e, 3c-2e, and 4c-2e bonds are two-centered-two-electron, three-centered-two-electron, and four-centered-two-electron chemical bonds, in which only two electrons are shared between the centers. They are referred to localized \(\sigma \)-bonds. The 6c-2e, 7c-2e and nc-2e bonds are six-centered-two-electron, seven-centered-two-electron, and multi-centered-two-electron, in which only two electrons are shared between the centers. They refer to delocalized \(\pi \)-bonds The 2c-2e, 3c-2e, and 4c-2e bonds are two-centered-two-electron, three-centered-two-electron, and four-centered-two-electron chemical bonds, in which only two electrons are shared between the centers. They are referred to localized \(\sigma \)-bonds. The 6c-2e, 7c-2e and nc-2e bonds are six-centered-two-electron, seven-centered-two-electron, and multi-centered-two-electron, in which only two electrons are shared between the centers. They refer to delocalized \(\pi \)-bonds
20.
go back to reference E.S. Penev, S. Bhowmick, A. Sadrzadeh, B.I. Yakobson, Polymorphism of two-dimensional boron. Nano Lett. 12, 2441–2445 (2012) E.S. Penev, S. Bhowmick, A. Sadrzadeh, B.I. Yakobson, Polymorphism of two-dimensional boron. Nano Lett. 12, 2441–2445 (2012)
21.
go back to reference A.R. Oganov, C.W. Glass, Evolutionary crystal structure prediction as a tool in materials design. J. Phys.: Condens. Matter 20, 064210-1 to 064210-6 (2008) A.R. Oganov, C.W. Glass, Evolutionary crystal structure prediction as a tool in materials design. J. Phys.: Condens. Matter 20, 064210-1 to 064210-6 (2008)
22.
go back to reference Y.-C. Wang, J. Lv, L. Zhu, Y.-M. Ma, CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070 (2012) Y.-C. Wang, J. Lv, L. Zhu, Y.-M. Ma, CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070 (2012)
23.
go back to reference X.-B. Li, S.-Y. Xie, H. Zheng, W.Q. Tian, H.-B. Sun, Boron based two-dimensional crystals: theoretical design, realization proposal and applications. Nanoscale 7, 18863–18871 (2015) X.-B. Li, S.-Y. Xie, H. Zheng, W.Q. Tian, H.-B. Sun, Boron based two-dimensional crystals: theoretical design, realization proposal and applications. Nanoscale 7, 18863–18871 (2015)
24.
go back to reference X.-J. Wu, J. Dai, Y. Zhao, Z.-W. Zhuo, J.-L. Yang, X.C. Zeng, Two-dimensional boron monolayer sheets. ACS Nano 6, 7443–7453 (2012) X.-J. Wu, J. Dai, Y. Zhao, Z.-W. Zhuo, J.-L. Yang, X.C. Zeng, Two-dimensional boron monolayer sheets. ACS Nano 6, 7443–7453 (2012)
25.
go back to reference H.-G. Lu, Y.-W. Mu, H. Bai, Q. Chen, S.-D. Li, Binary nature of monolayer boron sheets from ab initio global searches. J. Chem. Phys. 138, 024701-1 to 024701-4 (2013) H.-G. Lu, Y.-W. Mu, H. Bai, Q. Chen, S.-D. Li, Binary nature of monolayer boron sheets from ab initio global searches. J. Chem. Phys. 138, 024701-1 to 024701-4 (2013)
26.
go back to reference X. Yu, L. Li, X.-W. Xu, C.-C. Tang, Prediction of Two-Dimensional Boron Sheets by Particle Swarm Optimization Algorithm. J. Phys. Chem. C 116, 20075–20079 (2012) X. Yu, L. Li, X.-W. Xu, C.-C. Tang, Prediction of Two-Dimensional Boron Sheets by Particle Swarm Optimization Algorithm. J. Phys. Chem. C 116, 20075–20079 (2012)
27.
go back to reference M. Simsek, S. Yadin, First-principles calculations of two dimensional boron sheets, in \(17{th}\) International Symposium on Boron, Borides, and Related Materials. Poster (2011) M. Simsek, S. Yadin, First-principles calculations of two dimensional boron sheets, in \(17{th}\) International Symposium on Boron, Borides, and Related Materials. Poster (2011)
28.
go back to reference X.-F. Zhou, X. Dong, A.R. Oganov, Q. Zhu, Y.-J. Tian, H.-T. Wang, Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys. Rev. Lett. 112, 085502-1 to 085502-5 (2014) X.-F. Zhou, X. Dong, A.R. Oganov, Q. Zhu, Y.-J. Tian, H.-T. Wang, Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys. Rev. Lett. 112, 085502-1 to 085502-5 (2014)
29.
go back to reference H.-J. Zhai, B. Kiran, J. Li, L.-S. Wang, Hydrocarbon analogues of boron clusters: planarity, aromaticity and antiaromaticity. Nat. Mater. 2, 827–833 (2003) H.-J. Zhai, B. Kiran, J. Li, L.-S. Wang, Hydrocarbon analogues of boron clusters: planarity, aromaticity and antiaromaticity. Nat. Mater. 2, 827–833 (2003)
30.
go back to reference Y.-Y. Liu, E.S. Penev, B.I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations. Angew. Chem. 52, 3238–3241 (2013) Y.-Y. Liu, E.S. Penev, B.I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations. Angew. Chem. 52, 3238–3241 (2013)
31.
go back to reference H.-S. Liu, J.-F. Gao, J.-J. Zhao, From boron cluster to two-dimensional boron sheet on Cu(111) surface: growth mechanism and hole formation. Sci. Rep. 3, 3238-1– 3238-9 (2013) H.-S. Liu, J.-F. Gao, J.-J. Zhao, From boron cluster to two-dimensional boron sheet on Cu(111) surface: growth mechanism and hole formation. Sci. Rep. 3, 3238-1– 3238-9 (2013)
33.
go back to reference P. Tandy, M. Yu, C. Leahy. C. Jayanti, S.Y. Wu, Next generation of the self-consistent and environment-dependent Hamiltonian: applications to various boron allotropes from zero- to three-dimensional structures. J. Chem Phys. 142, 124106 (2015) P. Tandy, M. Yu, C. Leahy. C. Jayanti, S.Y. Wu, Next generation of the self-consistent and environment-dependent Hamiltonian: applications to various boron allotropes from zero- to three-dimensional structures. J. Chem Phys. 142, 124106 (2015)
34.
go back to reference R.B. Patel, T.-M. Chou, Z. Iqbal, Synthesis of boron nanowires, nanotubes, and nanosheets. J. Nanomater. 2015, 1–7 (2015) R.B. Patel, T.-M. Chou, Z. Iqbal, Synthesis of boron nanowires, nanotubes, and nanosheets. J. Nanomater. 2015, 1–7 (2015)
35.
go back to reference A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X.-L. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger, Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015) A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X.-L. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger, Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015)
36.
go back to reference G. Tai, T.-S. Hu, Y.-G. Zhou, X.-F. Wang, J.-Z. Kong, T. Zeng, Y.-C. You, Q. Wang, Synthesis of atomically thin boron films on copper foils. Angew. Chem. Int. Ed. 54, 1–6 (2015) G. Tai, T.-S. Hu, Y.-G. Zhou, X.-F. Wang, J.-Z. Kong, T. Zeng, Y.-C. You, Q. Wang, Synthesis of atomically thin boron films on copper foils. Angew. Chem. Int. Ed. 54, 1–6 (2015)
37.
go back to reference A.R. Oganov, J.-H. Chen, C. Gatti, Y.-Z. Ma, Y.-M. Ma, C.W. Glass, Z.-X. Liu, T. Yu, O.O. Kurakevych, V.L. Solozhenko, Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009) A.R. Oganov, J.-H. Chen, C. Gatti, Y.-Z. Ma, Y.-M. Ma, C.W. Glass, Z.-X. Liu, T. Yu, O.O. Kurakevych, V.L. Solozhenko, Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009)
38.
go back to reference B.J. Feng, J. Zhang, Q. Zhong, W.-B. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K.-H. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 2, 1–6 (2016) B.J. Feng, J. Zhang, Q. Zhong, W.-B. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K.-H. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 2, 1–6 (2016)
39.
go back to reference Z.-H. Zhang, Y. Yang, G.-Y. Gao, B.I. Yakobson, Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem. Int. Ed. 54, 13022–13026 (2015) Z.-H. Zhang, Y. Yang, G.-Y. Gao, B.I. Yakobson, Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem. Int. Ed. 54, 13022–13026 (2015)
40.
go back to reference W.B. Li, L.J. Kong, C.Y. Chen, J. Gou, S.X. Sheng, W.F. Zhang, H. Li, L. Chen, P. Cheng, K.H. Wu, Experimental realization of honeycomb borophene. Sci. Bull. 63, 282–286 (2018) W.B. Li, L.J. Kong, C.Y. Chen, J. Gou, S.X. Sheng, W.F. Zhang, H. Li, L. Chen, P. Cheng, K.H. Wu, Experimental realization of honeycomb borophene. Sci. Bull. 63, 282–286 (2018)
42.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004) K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)
47.
go back to reference H.P. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds. Pure Appl. Chem. 66, 1893–1901 (1994) H.P. Boehm, R. Setton, E. Stumpp, Nomenclature and terminology of graphite intercalation compounds. Pure Appl. Chem. 66, 1893–1901 (1994)
48.
go back to reference M. Inagaki, F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2, 13193–13206 (2014) M. Inagaki, F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2, 13193–13206 (2014)
49.
go back to reference Q. Peng, A.K. Dearden, J. Crean, L. Han, S. Liu, X.-D. Wen, S. De, New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 7, 1–29 (2014) Q. Peng, A.K. Dearden, J. Crean, L. Han, S. Liu, X.-D. Wen, S. De, New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 7, 1–29 (2014)
50.
go back to reference S.W. Cranford, D.B. Brommer, M.J. Buehler, Extended graphynes: simple scaling laws for stiffness, strength and fracture. Nanoscale 4, 7797–7809 (2012) S.W. Cranford, D.B. Brommer, M.J. Buehler, Extended graphynes: simple scaling laws for stiffness, strength and fracture. Nanoscale 4, 7797–7809 (2012)
51.
go back to reference S. Bravo, J. Correa, L. Chico, M. Pacheco, Tight-binding model for opto-electronic properties of penta-graphene nanostructures. Sci. Rep. 8, 11070 (2018) S. Bravo, J. Correa, L. Chico, M. Pacheco, Tight-binding model for opto-electronic properties of penta-graphene nanostructures. Sci. Rep. 8, 11070 (2018)
52.
go back to reference S.-H. Zhang, J. Zhou, Q. Wang, X.-S. Chen, Y.-Y. Kawazoe, P. Jena, Penta-graphene: a new carbon allotrope. Proc. Natl. Acad. Sci. 112, 2372–2377 (2015) S.-H. Zhang, J. Zhou, Q. Wang, X.-S. Chen, Y.-Y. Kawazoe, P. Jena, Penta-graphene: a new carbon allotrope. Proc. Natl. Acad. Sci. 112, 2372–2377 (2015)
54.
go back to reference Y. Aierken, O. Leenaerts, F.M. Peeters, Intrinsic magnetism in penta-hexa-graphene: a first-principles study. Phys. Rev. B 94, 155410 (2016) Y. Aierken, O. Leenaerts, F.M. Peeters, Intrinsic magnetism in penta-hexa-graphene: a first-principles study. Phys. Rev. B 94, 155410 (2016)
55.
go back to reference Y. Aierken, First-principles studies of novel two-dimensional materials and their physical properties. Ph.D. Thesis, University Antwerpen (2017) Y. Aierken, First-principles studies of novel two-dimensional materials and their physical properties. Ph.D. Thesis, University Antwerpen (2017)
56.
go back to reference Z.B. Wang, X.-F. Zhou, X.-M. Zhang, Q. Zhu, H.-F. Dong, M.-W. Zhao, A.R. Oganov, Phagraphene: a low-energy graphene allotrope composed of 5-6-7 carbon rings with distorted dirac cones. Nano Lett. 15, 2372–2377 (2015) Z.B. Wang, X.-F. Zhou, X.-M. Zhang, Q. Zhu, H.-F. Dong, M.-W. Zhao, A.R. Oganov, Phagraphene: a low-energy graphene allotrope composed of 5-6-7 carbon rings with distorted dirac cones. Nano Lett. 15, 2372–2377 (2015)
57.
go back to reference A.H.N. Shirazi, Molecular dynamics investigation of mechanical properties of single-layer phagraphene. Front. Struc. Civ. Eng. 13, 495–503 (2019) A.H.N. Shirazi, Molecular dynamics investigation of mechanical properties of single-layer phagraphene. Front. Struc. Civ. Eng. 13, 495–503 (2019)
58.
go back to reference A.H.N. Shirazi, Institute of Structural Mechanics, Bauhaus-Universität Weimar, Weimar, Germany. Private Communication A.H.N. Shirazi, Institute of Structural Mechanics, Bauhaus-Universität Weimar, Weimar, Germany. Private Communication
59.
go back to reference S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995) S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)
60.
go back to reference D.-H. Song, V. Paltoglou, S. Liu, Y. Zhu, D. Gallardo, L.Q. Tang, J.-J. Xu, M. Ablowitz, N.K. Efremidis, Z. Chen, Unveiling pseudospin and angular momentum in photonic graphene. Nat. Commun. 6, 6272 (2015) D.-H. Song, V. Paltoglou, S. Liu, Y. Zhu, D. Gallardo, L.Q. Tang, J.-J. Xu, M. Ablowitz, N.K. Efremidis, Z. Chen, Unveiling pseudospin and angular momentum in photonic graphene. Nat. Commun. 6, 6272 (2015)
61.
go back to reference S. Mohanty, M.K. Pati, S.K. Sarangi, P. Pattohoshi, G.S. Roy, Nanoscale based graphene: a review of its properties for electronic and photonic applications. Int. J. Recent Sci. Res. 6, 3267–3271 (2015) S. Mohanty, M.K. Pati, S.K. Sarangi, P. Pattohoshi, G.S. Roy, Nanoscale based graphene: a review of its properties for electronic and photonic applications. Int. J. Recent Sci. Res. 6, 3267–3271 (2015)
62.
go back to reference J. Sun, J. Kosel, Finite-element modelling and analysis of hall effect and extraordinary magnetoresistance effect, in Finite Element Analysis - New Trends and Developments, ed. by F. Ebrahimi (INTECH Publisher, 2012), pp. (201–224) J. Sun, J. Kosel, Finite-element modelling and analysis of hall effect and extraordinary magnetoresistance effect, in Finite Element Analysis - New Trends and Developments, ed. by F. Ebrahimi (INTECH Publisher, 2012), pp. (201–224)
63.
go back to reference J. Guillemette, Electronic transport in hydrogenated graphene. Ph.D. thesis (McGill University, Montréal, Québec, 2014) J. Guillemette, Electronic transport in hydrogenated graphene. Ph.D. thesis (McGill University, Montréal, Québec, 2014)
64.
go back to reference C.R. Dean, A study of the fractional quantum hall energy gap at half filling, Ph.D. thesis (McGill University, 2008) C.R. Dean, A study of the fractional quantum hall energy gap at half filling, Ph.D. thesis (McGill University, 2008)
65.
go back to reference S.-J. Gong, H.-C. Ding, W.-J. Zhu, C.-G. Duan, Z.-Q. Zhu, J.-H. Chu, A new pathway towards all-electric spintronics: electric-field control of spin states through surface/interface effects. Sci. China-Phys. Mech. Astron. 56, 232–244 (2013) S.-J. Gong, H.-C. Ding, W.-J. Zhu, C.-G. Duan, Z.-Q. Zhu, J.-H. Chu, A new pathway towards all-electric spintronics: electric-field control of spin states through surface/interface effects. Sci. China-Phys. Mech. Astron. 56, 232–244 (2013)
66.
go back to reference V. Barone, O. Hod, J.E. Peralta, G.E. Scuseria, Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Acc. Chem. Res. 44, 269–279 (2011) V. Barone, O. Hod, J.E. Peralta, G.E. Scuseria, Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Acc. Chem. Res. 44, 269–279 (2011)
67.
go back to reference S. Dutta, S.K. Pati, Novel properties of graphene nanoribbons: a review. J. Mater. Chem. 20, 8207–8223 (2010) S. Dutta, S.K. Pati, Novel properties of graphene nanoribbons: a review. J. Mater. Chem. 20, 8207–8223 (2010)
68.
go back to reference Y.-W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006) Y.-W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006)
70.
go back to reference M.-H. Wu, X.-J. Wu, Y. Gao, X.C. Zeng, Materials design of half-metallic graphene and graphene nanoribbons. Appl. Phys. Lett. 94, 223111 (2009) M.-H. Wu, X.-J. Wu, Y. Gao, X.C. Zeng, Materials design of half-metallic graphene and graphene nanoribbons. Appl. Phys. Lett. 94, 223111 (2009)
71.
go back to reference A.C. Ferrrari et al., Review: science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015) A.C. Ferrrari et al., Review: science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015)
Metadata
Title
Two-Dimensional Sheets
Author
Ihsan Boustani
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-32726-2_6

Premium Partners