Skip to main content
Top
Published in: Wireless Personal Communications 4/2017

03-06-2017

Two Novel Adaptive Transmission Schemes in a Decode-and-Forward Relaying Network

Authors: Mohammad Mohammadi Amiri, Behrouz Maham

Published in: Wireless Personal Communications | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Adaptive transmission in a cooperative network with a half-duplex relay operating in decode-and-forward mode is considered. The main purpose of the paper is maximizing the spectral efficiency of the system, which is reduced by using half-duplex relaying, while the bit error performance is kept below an appropriate threshold. The source transmits its data adaptively using quadratic amplitude modulation. Two adaptive transmission schemes are proposed: the first scheme is named simple adaptive transmission scheme (SATS), and the second one is called high-performance spectral efficiency scheme (HPSES). The SATS has a low complexity system at the destination which does not combine received signals from the source and relay. However, the HPSES uses a linear combination at the destination which is a novel detector to take the possibility of error at the relay into account. Then, we derive exact closed-form expression for the average spectral efficiency and outage probability of the system and an approximate closed-form expression for the average bit error probability. The simulation results corroborates theoretical results. Furthermore, it is shown that despite much lower complexity, the performance of the SATS is close to other well-known schemes. Moreover, the HPSES outperforms other methods of adaptive transmissions in sense of the spectral efficiency and outage probability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Proakis, J. G., & Salehi, M. (2008). Digital communications. New York: McGraw-Hill. Proakis, J. G., & Salehi, M. (2008). Digital communications. New York: McGraw-Hill.
2.
go back to reference Laneman, J. N., Tse, D. N. C., & Wornel, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefMATH Laneman, J. N., Tse, D. N. C., & Wornel, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefMATH
3.
go back to reference Goldsmith, A. J., & Chya, S.-G. (1997). Variable-rate variable-power mQAM for fading channels. IEEE Transactions on Communications, 45(10), 1218–1230.CrossRef Goldsmith, A. J., & Chya, S.-G. (1997). Variable-rate variable-power mQAM for fading channels. IEEE Transactions on Communications, 45(10), 1218–1230.CrossRef
4.
go back to reference Alouini, M.-S., & Goldsmith, A. J. (1999). Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.CrossRef Alouini, M.-S., & Goldsmith, A. J. (1999). Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.CrossRef
5.
go back to reference Mahinthan, V., Rutagemwa, H., Mark, J. W., & Shen, X. (2009). Cross-layer performance study of cooperative diversity system with ARQ. IEEE Transactions on Vehicular Technology, 58(2), 705–719.CrossRef Mahinthan, V., Rutagemwa, H., Mark, J. W., & Shen, X. (2009). Cross-layer performance study of cooperative diversity system with ARQ. IEEE Transactions on Vehicular Technology, 58(2), 705–719.CrossRef
6.
go back to reference Nechiporenko, T., Kalansuriya, P., & Tellambura, C. (2009). Performance of optimum switching adaptive m-QAM for amplify-and-forward relays. IEEE Transactions on Vehicular Technology, 58(5), 2258–2268.CrossRef Nechiporenko, T., Kalansuriya, P., & Tellambura, C. (2009). Performance of optimum switching adaptive m-QAM for amplify-and-forward relays. IEEE Transactions on Vehicular Technology, 58(5), 2258–2268.CrossRef
7.
go back to reference Nechiporenko, T., Phan, K. T., Tellambura, C., & Nguyen, H. H. (2009). On the capacity of Rayleigh fading cooperative systems under adaptive transmission. IEEE Transactions on Wireless Communications, 8(4), 1626–1631.CrossRef Nechiporenko, T., Phan, K. T., Tellambura, C., & Nguyen, H. H. (2009). On the capacity of Rayleigh fading cooperative systems under adaptive transmission. IEEE Transactions on Wireless Communications, 8(4), 1626–1631.CrossRef
8.
go back to reference Kwon, J. W., Ko, Y. C., & Yang, H. C. (2011). Maximum spectral efficiency of amplify-and-forward cooperative transmission with multiple relays. IEEE Transactions on Wireless Communications, 10(1), 49–54.CrossRef Kwon, J. W., Ko, Y. C., & Yang, H. C. (2011). Maximum spectral efficiency of amplify-and-forward cooperative transmission with multiple relays. IEEE Transactions on Wireless Communications, 10(1), 49–54.CrossRef
9.
go back to reference Zhang, Y., Ma, Y., & Tafazolli, R. (2004). Modulation-adaptive cooperation schemes for wireless networks. In Proceedings of IEEE 67th VTC Spring, Singapore, May 2004 (pp. 1320–1324). Zhang, Y., Ma, Y., & Tafazolli, R. (2004). Modulation-adaptive cooperation schemes for wireless networks. In Proceedings of IEEE 67th VTC Spring, Singapore, May 2004 (pp. 1320–1324).
10.
go back to reference Kalansuryia, P., & Tellambura, C. (2009). Capacity analysis of a decode-and-forward cooperative network under adaptive transmission. In Proceedings of IEEE 22nd Canadian conference on electrical and computer engineering, Canada, May 2009 (pp. 298–303). Kalansuryia, P., & Tellambura, C. (2009). Capacity analysis of a decode-and-forward cooperative network under adaptive transmission. In Proceedings of IEEE 22nd Canadian conference on electrical and computer engineering, Canada, May 2009 (pp. 298–303).
11.
go back to reference Altubaishi, E. S., & Shen, X. (2012). Performance analysis of decode-and-forward relaying schemes with adaptive quadrature amplitude modulation (QAM). IET Communications, 6(6), 649–658.MathSciNetCrossRefMATH Altubaishi, E. S., & Shen, X. (2012). Performance analysis of decode-and-forward relaying schemes with adaptive quadrature amplitude modulation (QAM). IET Communications, 6(6), 649–658.MathSciNetCrossRefMATH
12.
go back to reference Bastami, A., & Olfat, A. (2011). Selection relaying schemes for cooperative wireless networks with adaptive modulation. IEEE Transactions on Vehicular Technology, 60(4), 1539–1558.CrossRefMATH Bastami, A., & Olfat, A. (2011). Selection relaying schemes for cooperative wireless networks with adaptive modulation. IEEE Transactions on Vehicular Technology, 60(4), 1539–1558.CrossRefMATH
13.
go back to reference Ma, Y., Tafazolli, R., Zhang, Y., & Qian, C. (2011). Adaptive modulation for opportunistic decode-and-forward relaying. IEEE Transactions on Wireless Communications, 10(7), 2017–2022.CrossRef Ma, Y., Tafazolli, R., Zhang, Y., & Qian, C. (2011). Adaptive modulation for opportunistic decode-and-forward relaying. IEEE Transactions on Wireless Communications, 10(7), 2017–2022.CrossRef
14.
go back to reference Hwang, K. S., Ko, Y. C., & Alouini, M.-S. (2009). Performance analysis of incremental opportunistic relaying over identically and non-identically distributed cooperative paths. IEEE Transactions on Wireless Communications, 8(4), 1953–1961.CrossRef Hwang, K. S., Ko, Y. C., & Alouini, M.-S. (2009). Performance analysis of incremental opportunistic relaying over identically and non-identically distributed cooperative paths. IEEE Transactions on Wireless Communications, 8(4), 1953–1961.CrossRef
15.
go back to reference Jiang, J., Thompson, J. S., & Sun, H. (2011). A singular-value-based adaptive modulation and cooperation scheme for virtual-MIMO systems. IEEE Transactions on Vehicular Technology, 60(6), 2495–2504.CrossRef Jiang, J., Thompson, J. S., & Sun, H. (2011). A singular-value-based adaptive modulation and cooperation scheme for virtual-MIMO systems. IEEE Transactions on Vehicular Technology, 60(6), 2495–2504.CrossRef
16.
go back to reference Wang, T., Giannakis, G. B., & Wang, R. (2008). Smart regenerative relays for link-adaptive cooperative communications. IEEE Transactions on Communications, 56(11), 1950–1960.CrossRef Wang, T., Giannakis, G. B., & Wang, R. (2008). Smart regenerative relays for link-adaptive cooperative communications. IEEE Transactions on Communications, 56(11), 1950–1960.CrossRef
17.
go back to reference Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.CrossRef Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.CrossRef
18.
go back to reference Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part II: Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.CrossRef Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part II: Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.CrossRef
19.
go back to reference Chen, D., & Laneman, J. N. (2006). Modulation and demodulation for cooperative diversity in wireless systems. IEEE Transactions on Wireless Communications, 5(7), 1785–1794.CrossRef Chen, D., & Laneman, J. N. (2006). Modulation and demodulation for cooperative diversity in wireless systems. IEEE Transactions on Wireless Communications, 5(7), 1785–1794.CrossRef
20.
go back to reference Wang, T., Cano, A., Giannakis, G. B., & Laneman, J. N. (2007). High-performance cooperative demodulation with decode-and-forward relays. IEEE Transactions on Communications, 55(7), 1427–1438.CrossRef Wang, T., Cano, A., Giannakis, G. B., & Laneman, J. N. (2007). High-performance cooperative demodulation with decode-and-forward relays. IEEE Transactions on Communications, 55(7), 1427–1438.CrossRef
21.
go back to reference Onat, F. A., Fan, Y., Yanikomeroglu, H., & Poor, H. V. (2008). Threshold based relay selection in cooperative wireless networks. In Global telecommunications conference, 2008. IEEE GLOBECOM 2008. IEEE, Nov. 2008 (pp. 1–5). Onat, F. A., Fan, Y., Yanikomeroglu, H., & Poor, H. V. (2008). Threshold based relay selection in cooperative wireless networks. In Global telecommunications conference, 2008. IEEE GLOBECOM 2008. IEEE, Nov. 2008 (pp. 1–5).
22.
go back to reference Bansal, A., Bhatnagar, M. R., Hjorungnes, A., & Han, Z. (2013). Low-complexity decoding in DF MIMO relaying system. IEEE Transactions on Vehicular Technology, 62(3), 1123–1137.CrossRef Bansal, A., Bhatnagar, M. R., Hjorungnes, A., & Han, Z. (2013). Low-complexity decoding in DF MIMO relaying system. IEEE Transactions on Vehicular Technology, 62(3), 1123–1137.CrossRef
23.
go back to reference Jin, X., No, J.-S., & Shin, D.-J. (2011). Relay selection for decode-and-forward cooperative network with multiple antennas. IEEE Transactions on Wireless Communications, 10(12), 4068–4079.CrossRef Jin, X., No, J.-S., & Shin, D.-J. (2011). Relay selection for decode-and-forward cooperative network with multiple antennas. IEEE Transactions on Wireless Communications, 10(12), 4068–4079.CrossRef
24.
go back to reference Goldsmith, A. J. (2005). Wireless communications. New York: Cambridge University Press.CrossRef Goldsmith, A. J. (2005). Wireless communications. New York: Cambridge University Press.CrossRef
Metadata
Title
Two Novel Adaptive Transmission Schemes in a Decode-and-Forward Relaying Network
Authors
Mohammad Mohammadi Amiri
Behrouz Maham
Publication date
03-06-2017
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2017
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4443-5

Other articles of this Issue 4/2017

Wireless Personal Communications 4/2017 Go to the issue