Skip to main content
Top

23-10-2024

Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data

Authors: Sakie J. Arachchige, Xinyuan Chen, Qian M. Zhou

Published in: Lifetime Data Analysis

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a two-stage estimation procedure for a copula-based model with semi-competing risks data, where the non-terminal event is subject to dependent censoring by the terminal event, and both events are subject to independent censoring. With a copula-based model, the marginal survival functions of individual event times are specified by semiparametric transformation models, and the dependence between the bivariate event times is specified by a parametric copula function. For the estimation procedure, in the first stage, the parameters associated with the marginal of the terminal event are estimated using only the corresponding observed outcomes, and in the second stage, the marginal parameters for the non-terminal event time and the copula parameter are estimated together via maximizing a pseudo-likelihood function based on the joint distribution of the bivariate event times. We derived the asymptotic properties of the proposed estimator and provided an analytic variance estimator for inference. Through simulation studies, we showed that our approach leads to consistent estimates with less computational cost and more robustness than the one-stage procedure developed in Chen YH (Lifetime Data Anal 18:36–57, 2012), where all parameters were estimated simultaneously. In addition, our approach demonstrates more desirable finite-sample performances over another existing two-stage estimation method proposed in Zhu H et al., (Commu Statistics-Theory Methods 51(22):7830–7845, 2021) . An R package PMLE4SCR is developed to implement our proposed method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abegaz F, Gijbels I, Veraverbeke N (2012) Semiparametric estimation of conditional copulas. J Multivariate Analysis 110:43–73MathSciNetCrossRef Abegaz F, Gijbels I, Veraverbeke N (2012) Semiparametric estimation of conditional copulas. J Multivariate Analysis 110:43–73MathSciNetCrossRef
go back to reference Acar EF, Craiu RV, Yao F (2011) Dependence calibration in conditional copulas: A nonparametric approach. Biometrics 67(2):445–453MathSciNetCrossRef Acar EF, Craiu RV, Yao F (2011) Dependence calibration in conditional copulas: A nonparametric approach. Biometrics 67(2):445–453MathSciNetCrossRef
go back to reference Chen YH (2012) Maximum likelihood analysis of semicompeting risks data with semiparametric regression models. Lifetime Data Analysis 18:36–57MathSciNetCrossRef Chen YH (2012) Maximum likelihood analysis of semicompeting risks data with semiparametric regression models. Lifetime Data Analysis 18:36–57MathSciNetCrossRef
go back to reference Chen X, Harhay MO, Tong G, Li F (2024) A Bayesian machine learning approach for estimating heterogeneous survivor causal effects: applications to a critical care trial. Annal Appl Statistic 18(1):350–374MathSciNet Chen X, Harhay MO, Tong G, Li F (2024) A Bayesian machine learning approach for estimating heterogeneous survivor causal effects: applications to a critical care trial. Annal Appl Statistic 18(1):350–374MathSciNet
go back to reference Fletcher R (2000) Practical Methods of Optimization. John Wiley & Sons, Chichester, UKCrossRef Fletcher R (2000) Practical Methods of Optimization. John Wiley & Sons, Chichester, UKCrossRef
go back to reference Geerdens C, Acar EF, Janssen P (2018) Conditional copula models for right-censored clustered event time data. Biostatistics 19(2):247–262MathSciNetCrossRef Geerdens C, Acar EF, Janssen P (2018) Conditional copula models for right-censored clustered event time data. Biostatistics 19(2):247–262MathSciNetCrossRef
go back to reference Ghosh D (2006) Semiparametric inferences for association with semi-competing risks data. Statistic Medicine 25(12):2059–2070MathSciNetCrossRef Ghosh D (2006) Semiparametric inferences for association with semi-competing risks data. Statistic Medicine 25(12):2059–2070MathSciNetCrossRef
go back to reference Hsieh JJ, Wang W, Ding AA (2008) Regression analysis based on semicompeting risks data. J Royal Statistic Soc Ser B: Statistic Methodol 70(1):3–20MathSciNetCrossRef Hsieh JJ, Wang W, Ding AA (2008) Regression analysis based on semicompeting risks data. J Royal Statistic Soc Ser B: Statistic Methodol 70(1):3–20MathSciNetCrossRef
go back to reference Klein JP, Moeschberger ML (2003) Surviv Analy: Tech Cens Truncated Data Springer, New York Klein JP, Moeschberger ML (2003) Surviv Analy: Tech Cens Truncated Data Springer, New York
go back to reference Lakhal L, Rivest LP, Abdous B (2008) Estimating survival and association in a semicompeting risks model. Biometrics 64(1):180–188MathSciNetCrossRef Lakhal L, Rivest LP, Abdous B (2008) Estimating survival and association in a semicompeting risks model. Biometrics 64(1):180–188MathSciNetCrossRef
go back to reference Nikoloulopoulos AK, Karlis D (2008) Multivariate logit copula model with an application to dental data. Statistics Medicine 27(30):6393–6406MathSciNetCrossRef Nikoloulopoulos AK, Karlis D (2008) Multivariate logit copula model with an application to dental data. Statistics Medicine 27(30):6393–6406MathSciNetCrossRef
go back to reference Shih JH, Louis TA (1995) Inferences on the association parameter in copula models for bivariate survival data. Biometrics 51(4):1384–1399MathSciNetCrossRef Shih JH, Louis TA (1995) Inferences on the association parameter in copula models for bivariate survival data. Biometrics 51(4):1384–1399MathSciNetCrossRef
go back to reference Sklar M (1959) Fonctions de répartition à n dimensions et leurs marges. Annales de l’ISUP 8(3):229–231 Sklar M (1959) Fonctions de répartition à n dimensions et leurs marges. Annales de l’ISUP 8(3):229–231
go back to reference Sun T, Li Y, Xiao Z, Ding Y, Wang X (2023) Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: application to disability in elderly. Statistical Methods Medical Res 32(4):656–670MathSciNetCrossRef Sun T, Li Y, Xiao Z, Ding Y, Wang X (2023) Semiparametric copula method for semi-competing risks data subject to interval censoring and left truncation: application to disability in elderly. Statistical Methods Medical Res 32(4):656–670MathSciNetCrossRef
go back to reference Sun T, Liang W, Zhang G, Yi D, Ding Y, Zhang L (2024) Penalised semi-parametric copula method for semi-competing risks data: application to hip fracture in elderly. J Royal Statistical Soc Ser C: Appl Statistics 73(1):241–256MathSciNetCrossRef Sun T, Liang W, Zhang G, Yi D, Ding Y, Zhang L (2024) Penalised semi-parametric copula method for semi-competing risks data: application to hip fracture in elderly. J Royal Statistical Soc Ser C: Appl Statistics 73(1):241–256MathSciNetCrossRef
go back to reference Varadhan R, Xue QL, Bandeen-Roche K (2014) Semicompeting risks in aging research: methods, issues and needs. Lifetime data analysis 20(4):538–562MathSciNetCrossRef Varadhan R, Xue QL, Bandeen-Roche K (2014) Semicompeting risks in aging research: methods, issues and needs. Lifetime data analysis 20(4):538–562MathSciNetCrossRef
go back to reference Wang W (2003) Estimating the association parameter for copula models under dependent censoring. J Royal Statistical Soc Ser B: Statistical Methodol 65(1):257–273MathSciNetCrossRef Wang W (2003) Estimating the association parameter for copula models under dependent censoring. J Royal Statistical Soc Ser B: Statistical Methodol 65(1):257–273MathSciNetCrossRef
go back to reference Zeng D, Lin D (2006) Efficient estimation of semiparametric transformation models for counting processes. Biometrika 93(3):627–640MathSciNetCrossRef Zeng D, Lin D (2006) Efficient estimation of semiparametric transformation models for counting processes. Biometrika 93(3):627–640MathSciNetCrossRef
go back to reference Zhou R, Zhu H, Bondy M, Ning J (2016) Semiparametric model for semi-competing risks data with application to breast cancer study. Lifetime data analysis 22:456–471MathSciNetCrossRef Zhou R, Zhu H, Bondy M, Ning J (2016) Semiparametric model for semi-competing risks data with application to breast cancer study. Lifetime data analysis 22:456–471MathSciNetCrossRef
go back to reference Zhu H, Lan Y, Ning J, Shen Y (2021) Semiparametric copula-based regression modeling of semi-competing risks data. Commu Statistics-Theory Methods 51(22):7830–7845MathSciNetCrossRef Zhu H, Lan Y, Ning J, Shen Y (2021) Semiparametric copula-based regression modeling of semi-competing risks data. Commu Statistics-Theory Methods 51(22):7830–7845MathSciNetCrossRef
Metadata
Title
Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data
Authors
Sakie J. Arachchige
Xinyuan Chen
Qian M. Zhou
Publication date
23-10-2024
Publisher
Springer US
Published in
Lifetime Data Analysis
Print ISSN: 1380-7870
Electronic ISSN: 1572-9249
DOI
https://doi.org/10.1007/s10985-024-09640-z

Premium Partner