Skip to main content


Swipe to navigate through the articles of this issue

21-04-2017 | Original Article | Issue 3/2017 Open Access

Chinese Journal of Mechanical Engineering 3/2017

Two-step Structural Design of Mesh Antennas for High Beam Pointing Accuracy

Chinese Journal of Mechanical Engineering > Issue 3/2017
Shuxin ZHANG, Jingli DU, Wei WANG, Xinghua ZHANG, Yali ZONG


A well-designed reflector surface with high beam pointing accuracy in electromagnetic performance is of practical significance to the space application of cable mesh reflector antennas. As for space requirements, circular polarizations are widely used in spaceborne antennas, which usually lead to a beam shift for offset reflectors and influence the beam pointing accuracy. A two-step structural design procedure is proposed to overcome the beam squint phenomenon for high beam pointing accuracy design of circularly polarized offset cable mesh reflectors. A simple structural optimal design and an integrated structural electromagnetic optimization are combined to alleviate the beam squint effect of circular polarizations. It is implemented by cable pretension design and adjustment to shape the offset cable mesh surface. Besides, in order to increase the efficiency of integrated optimization, an update Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian matrix is employed in the optimization iteration with sequential quadratic programming. A circularly polarized offset cable mesh reflector is utilized to show the feasibility and effectiveness of the proposed procedure. A high beam pointing accuracy in order of 0.0001º of electromagnetic performance is achieved.

Our product recommendations

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

About this article

Other articles of this Issue 3/2017

Chinese Journal of Mechanical Engineering 3/2017 Go to the issue

Premium Partners

    Image Credits