Skip to main content
Top

2020 | OriginalPaper | Chapter

4. Types of Flame Retardants Used for the Synthesis of Flame-Retardant Polymers

Authors : Suprakas Sinha Ray, Malkappa Kuruma

Published in: Halogen-Free Flame-Retardant Polymers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Currently, a variety of chemical compounds are being used as Flame-retardants (FRs) and they can be classified according to the type of element present.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F. Laoutid, L. Bonnaud, M. Alexandre, J.-M. Lopez-Cuesta, P. Dubois, New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R 63, 100–125 (2009)CrossRef F. Laoutid, L. Bonnaud, M. Alexandre, J.-M. Lopez-Cuesta, P. Dubois, New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R 63, 100–125 (2009)CrossRef
2.
go back to reference G. Zaikov, S. Lomakin, Ecological issue of polymer flame retardancy. J. Appl. Polym. Sci. 86, 2449–2462 (2002)CrossRef G. Zaikov, S. Lomakin, Ecological issue of polymer flame retardancy. J. Appl. Polym. Sci. 86, 2449–2462 (2002)CrossRef
3.
go back to reference J.W. Gilman, S.J. Ritchie, T. Kashiwagi, S.M. Lomakin, Fire‐retardant additives for polymeric materials—I. Char formation from silica gel–potassium carbonate. Fire Mater. 21, 23–32 (1997)CrossRef J.W. Gilman, S.J. Ritchie, T. Kashiwagi, S.M. Lomakin, Fire‐retardant additives for polymeric materials—I. Char formation from silica gel–potassium carbonate. Fire Mater. 21, 23–32 (1997)CrossRef
4.
go back to reference X. Su, Y. Yi, J. Tao, H. Qi, D. Li, Synergistic effect between a novel triazine charring agent and ammonium polyphosphate on flame retardancy and thermal behavior of polypropylene. Polym. Degrad. Stab. 105, 12–20 (2014)CrossRef X. Su, Y. Yi, J. Tao, H. Qi, D. Li, Synergistic effect between a novel triazine charring agent and ammonium polyphosphate on flame retardancy and thermal behavior of polypropylene. Polym. Degrad. Stab. 105, 12–20 (2014)CrossRef
5.
go back to reference Z.Z. Xu, J.Q. Huang, M.J. Chen, Y. Tan, Y.Z. Wang, Flame retardant mechanism of an efficient flame-retardant polymeric synergist with ammonium polyphosphate for polypropylene. Polym. Degrad. Stab. 98, 2011–2020 (2013)CrossRef Z.Z. Xu, J.Q. Huang, M.J. Chen, Y. Tan, Y.Z. Wang, Flame retardant mechanism of an efficient flame-retardant polymeric synergist with ammonium polyphosphate for polypropylene. Polym. Degrad. Stab. 98, 2011–2020 (2013)CrossRef
6.
go back to reference Q. Lv, J.Q. Huang, M.J. Chen, J. Zhao, Y. Tan, L. Chen, Y.Z. Wang, An effective flame retardant and smoke suppression oligomer for epoxy resin. Ind. Eng. Chem. Res. 52, 9397–9404 (2013)CrossRef Q. Lv, J.Q. Huang, M.J. Chen, J. Zhao, Y. Tan, L. Chen, Y.Z. Wang, An effective flame retardant and smoke suppression oligomer for epoxy resin. Ind. Eng. Chem. Res. 52, 9397–9404 (2013)CrossRef
7.
go back to reference Z. Wang, Y. Liu, J. Li, Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites. ACS Sustain. Chem. Eng. 5, 2375–2383 (2017)CrossRef Z. Wang, Y. Liu, J. Li, Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites. ACS Sustain. Chem. Eng. 5, 2375–2383 (2017)CrossRef
8.
go back to reference X.P. Hu, W.Y. Li, Y.Z. Wang, Synthesis and characterization of a novel nitrogen-containing flame retardant. J. Appl. Polym. Sci. 94, 1556–1561 (2004)CrossRef X.P. Hu, W.Y. Li, Y.Z. Wang, Synthesis and characterization of a novel nitrogen-containing flame retardant. J. Appl. Polym. Sci. 94, 1556–1561 (2004)CrossRef
9.
go back to reference X.P. Hu, Y.L. Li, Y.Z. Wang, Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene. Macromol. Mater. Eng. 289, 208–212 (2004)CrossRef X.P. Hu, Y.L. Li, Y.Z. Wang, Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene. Macromol. Mater. Eng. 289, 208–212 (2004)CrossRef
10.
go back to reference B. Li, M. Xu, Effect of a novel charring–foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym. Degrad. Stab. 91, 1380–1386 (2006)CrossRef B. Li, M. Xu, Effect of a novel charring–foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym. Degrad. Stab. 91, 1380–1386 (2006)CrossRef
11.
go back to reference W. Wang, P. Wen, J. Zhan, N. Hong, W. Cai, Z. Gui, Y. Hu, Synthesis of a novel charring agent containing pentaerythritol and triazine structure and its intumescent flame retardant performance for polypropylene. Polym. Degrad. Stab. 144, 454–463 (2017)CrossRef W. Wang, P. Wen, J. Zhan, N. Hong, W. Cai, Z. Gui, Y. Hu, Synthesis of a novel charring agent containing pentaerythritol and triazine structure and its intumescent flame retardant performance for polypropylene. Polym. Degrad. Stab. 144, 454–463 (2017)CrossRef
12.
go back to reference Z. Wang, P. Lv, Y. Hu, K. Hu, Thermal degradation study of intumescent flame retardants by TG and FTIR: melamine phosphate and its mixture with pentaerythritol. J. Anal. Appl. Pyrolysis 86, 207–214 (2009)CrossRef Z. Wang, P. Lv, Y. Hu, K. Hu, Thermal degradation study of intumescent flame retardants by TG and FTIR: melamine phosphate and its mixture with pentaerythritol. J. Anal. Appl. Pyrolysis 86, 207–214 (2009)CrossRef
13.
go back to reference M.J. Chen, Z.B. Shao, X.L. Wang, L. Chen, Y.Z. Wang, Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen–phosphorus flame retardant. Ind. Eng. Chem. Res. 51, 9769–9776 (2012)CrossRef M.J. Chen, Z.B. Shao, X.L. Wang, L. Chen, Y.Z. Wang, Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen–phosphorus flame retardant. Ind. Eng. Chem. Res. 51, 9769–9776 (2012)CrossRef
14.
go back to reference D. Lee, D.H. Hyun, S. Gwon, H.D. Cho, S. Kim, Method for manufacturing dicyclic phosphorus melamine compounds having superior fire retardancy and fire retardant material using thereof, Google Patents, 2002 D. Lee, D.H. Hyun, S. Gwon, H.D. Cho, S. Kim, Method for manufacturing dicyclic phosphorus melamine compounds having superior fire retardancy and fire retardant material using thereof, Google Patents, 2002
15.
go back to reference Y. Chen, Q. Wang, Preparation, properties and characterizations of halogen-free nitrogen–phosphorous flame-retarded glass fiber reinforced polyamide 6 composite. Polym. Degrad. Stab. 91, 2003–2013 (2006)CrossRef Y. Chen, Q. Wang, Preparation, properties and characterizations of halogen-free nitrogen–phosphorous flame-retarded glass fiber reinforced polyamide 6 composite. Polym. Degrad. Stab. 91, 2003–2013 (2006)CrossRef
16.
go back to reference Y. Tan, Z.B. Shao, X.F. Chen, J.W. Long, L. Chen, Y.Z. Wang, Novel multifunctional organic–inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin. ACS Appl. Mater. Interfaces 7, 17919–17928 (2015)PubMedCrossRef Y. Tan, Z.B. Shao, X.F. Chen, J.W. Long, L. Chen, Y.Z. Wang, Novel multifunctional organic–inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin. ACS Appl. Mater. Interfaces 7, 17919–17928 (2015)PubMedCrossRef
17.
go back to reference S. Bourbigot, S. Duquesne, Fire retardant polymers: recent developments and opportunities. J. Mater. Chem. 17, 2283–2300 (2007)CrossRef S. Bourbigot, S. Duquesne, Fire retardant polymers: recent developments and opportunities. J. Mater. Chem. 17, 2283–2300 (2007)CrossRef
18.
go back to reference S. Chen, J. Li, Y. Zhu, S. Su, Roles of anion of polyoxometalate-based ionic liquids in properties of intumescent flame retardant polypropylene. RSC Adv. 4, 32902–32913 (2014)CrossRef S. Chen, J. Li, Y. Zhu, S. Su, Roles of anion of polyoxometalate-based ionic liquids in properties of intumescent flame retardant polypropylene. RSC Adv. 4, 32902–32913 (2014)CrossRef
19.
go back to reference J. Han, G. Liang, A. Gu, J. Ye, Z. Zhang, L. Yuan, A novel inorganic–organic hybridized intumescent flame retardant and its super flame retarding cyanate ester resins. J. Mater. Chem. A 1, 2169–2182 (2013)CrossRef J. Han, G. Liang, A. Gu, J. Ye, Z. Zhang, L. Yuan, A novel inorganic–organic hybridized intumescent flame retardant and its super flame retarding cyanate ester resins. J. Mater. Chem. A 1, 2169–2182 (2013)CrossRef
20.
go back to reference B. Wang, Q. Tang, N. Hong, L. Song, L. Wang, Y. Shi, Y. Hu, Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene–vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends. ACS Appl. Mater. Interfaces 3, 3754–3761 (2011)PubMedCrossRef B. Wang, Q. Tang, N. Hong, L. Song, L. Wang, Y. Shi, Y. Hu, Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene–vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends. ACS Appl. Mater. Interfaces 3, 3754–3761 (2011)PubMedCrossRef
21.
go back to reference S. Bourbigot, M.L. Bras, F. Dabrowski, J.W. Gilman, T. Kashiwagi, PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater. 24, 201–208 (2000)CrossRef S. Bourbigot, M.L. Bras, F. Dabrowski, J.W. Gilman, T. Kashiwagi, PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater. 24, 201–208 (2000)CrossRef
22.
go back to reference J.S. Wang, D.Y. Wang, Y. Liu, X.G. Ge, Y.Z. Wang, Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin. J. Appl. Polym. Sci. 108, 2644–2653 (2008)CrossRef J.S. Wang, D.Y. Wang, Y. Liu, X.G. Ge, Y.Z. Wang, Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin. J. Appl. Polym. Sci. 108, 2644–2653 (2008)CrossRef
23.
go back to reference G. Camino, L. Costa, G. Martinasso, Intumescent fire-retardant systems. Polym. Degrad. Stab. 23, 359–376 (1989)CrossRef G. Camino, L. Costa, G. Martinasso, Intumescent fire-retardant systems. Polym. Degrad. Stab. 23, 359–376 (1989)CrossRef
24.
go back to reference S. Duquesne, M.L. Bras, S. Bourbigot, R. Delobel, H. Vezin, G. Camino, B. Eling, C. Lindsay, T. Roels, Expandable graphite: a fire retardant additive for polyurethane coatings. Fire Mater. 27, 103–117 (2003)CrossRef S. Duquesne, M.L. Bras, S. Bourbigot, R. Delobel, H. Vezin, G. Camino, B. Eling, C. Lindsay, T. Roels, Expandable graphite: a fire retardant additive for polyurethane coatings. Fire Mater. 27, 103–117 (2003)CrossRef
25.
go back to reference M. Lewin, Recent Advances in Flame Retardancy of Polymeric Materials (BCC, 1997) M. Lewin, Recent Advances in Flame Retardancy of Polymeric Materials (BCC, 1997)
26.
go back to reference R. Mount, J. Pysz, Phosphates as flame retardant additives, in: Proceedings of the International Conference on Fire Safety, 1991, pp. 203–11 R. Mount, J. Pysz, Phosphates as flame retardant additives, in: Proceedings of the International Conference on Fire Safety, 1991, pp. 203–11
27.
go back to reference A. Pitts, W. Kuryla, A. Papa, Flame Retardancy of Polymeric Materials (Marcel Dekker, New York, 1973) A. Pitts, W. Kuryla, A. Papa, Flame Retardancy of Polymeric Materials (Marcel Dekker, New York, 1973)
28.
go back to reference S. Duquesne, M. Le Bras, S. Bourbigot, R. Delobel, G. Camino, B. Eling, C. Lindsay, T. Roels, H. Vezin, Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate. J. Appl. Polym. Sci. 82, 3262–3274 (2001)CrossRef S. Duquesne, M. Le Bras, S. Bourbigot, R. Delobel, G. Camino, B. Eling, C. Lindsay, T. Roels, H. Vezin, Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate. J. Appl. Polym. Sci. 82, 3262–3274 (2001)CrossRef
29.
go back to reference Y. Yuan, H. Yang, B. Yu, Y. Shi, W. Wang, L. Song, Y. Hu, Y. Zhang, Phosphorus and nitrogen-containing polyols: synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites. Ind. Eng. Chem. Res. 55, 10813–10822 (2016)CrossRef Y. Yuan, H. Yang, B. Yu, Y. Shi, W. Wang, L. Song, Y. Hu, Y. Zhang, Phosphorus and nitrogen-containing polyols: synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites. Ind. Eng. Chem. Res. 55, 10813–10822 (2016)CrossRef
30.
go back to reference Y. Liu, Q. Wang, Catalytic action of phospho-tungstic acid in the synthesis of melamine salts of pentaerythritol phosphate and their synergistic effects in flame retarded polypropylene. Polym. Degrad. Stab. 91, 2513–2519 (2006)CrossRef Y. Liu, Q. Wang, Catalytic action of phospho-tungstic acid in the synthesis of melamine salts of pentaerythritol phosphate and their synergistic effects in flame retarded polypropylene. Polym. Degrad. Stab. 91, 2513–2519 (2006)CrossRef
31.
go back to reference J.M. Lubczak, R. Lubczak, Melamine polyphosphate—the reactive and additive flame retardant for polyurethane foams. Acta Chim. Slov. 63, 77–87 (2016)PubMedCrossRef J.M. Lubczak, R. Lubczak, Melamine polyphosphate—the reactive and additive flame retardant for polyurethane foams. Acta Chim. Slov. 63, 77–87 (2016)PubMedCrossRef
32.
go back to reference W. Yao, H. Wang, D. Guan, T. Fu, T. Zhang, Y. Dou, The effect of soluble ammonium polyphosphate on the properties of water blown semirigid polyurethane foams. Adv. Mater. Sci. Eng. 2017 (2017), Article ID 5282869, 7 pp. W. Yao, H. Wang, D. Guan, T. Fu, T. Zhang, Y. Dou, The effect of soluble ammonium polyphosphate on the properties of water blown semirigid polyurethane foams. Adv. Mater. Sci. Eng. 2017 (2017), Article ID 5282869, 7 pp.
33.
go back to reference G. Camino, L. Costa, L. Trossarelli, F. Costanzi, A. Pagliari, Study of the mechanism of intumescence in fire retardant polymers: Part VI—Mechanism of ester formation in ammonium polyphosphate-pentaerythritol mixtures. Polym. Degrad. Stab. 12, 213–228 (1985)CrossRef G. Camino, L. Costa, L. Trossarelli, F. Costanzi, A. Pagliari, Study of the mechanism of intumescence in fire retardant polymers: Part VI—Mechanism of ester formation in ammonium polyphosphate-pentaerythritol mixtures. Polym. Degrad. Stab. 12, 213–228 (1985)CrossRef
34.
go back to reference S. Bourbigot, M. Le Bras, R. Delobel, P. Bréant, J.M. Trémillon, Carbonization mechanisms resulting from intumescence—Part II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon 33, 283–294 (1995)CrossRef S. Bourbigot, M. Le Bras, R. Delobel, P. Bréant, J.M. Trémillon, Carbonization mechanisms resulting from intumescence—Part II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon 33, 283–294 (1995)CrossRef
35.
go back to reference S. Bourbigot, M.L. Bras, P. Bréant, J.M. Trémillon, R. Delobel, Zeolites: new synergistic agents for intumescent fire retardant thermoplastic formulations—criteria for the choice of the zeolite. Fire Mater. 20, 145–154 (1996)CrossRef S. Bourbigot, M.L. Bras, P. Bréant, J.M. Trémillon, R. Delobel, Zeolites: new synergistic agents for intumescent fire retardant thermoplastic formulations—criteria for the choice of the zeolite. Fire Mater. 20, 145–154 (1996)CrossRef
36.
go back to reference S. Bourbigot, M. Le Bras, R. Delobel, Carbonization mechanisms resulting from intumescence association with the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon 31, 1219–1230 (1993)CrossRef S. Bourbigot, M. Le Bras, R. Delobel, Carbonization mechanisms resulting from intumescence association with the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon 31, 1219–1230 (1993)CrossRef
37.
go back to reference R. Delobel, N. Ouassou, M. Le Bras, J.M. Leroy, Fire retardance of polypropylene: action of diammonium pyrophosphate-pentaerythritol intumescent mixture. Polym. Degrad. Stab. 23, 349–357 (1989)CrossRef R. Delobel, N. Ouassou, M. Le Bras, J.M. Leroy, Fire retardance of polypropylene: action of diammonium pyrophosphate-pentaerythritol intumescent mixture. Polym. Degrad. Stab. 23, 349–357 (1989)CrossRef
38.
go back to reference M. Liu, Y. Liu, Q. Wang, Flame-retarded poly(propylene) with melamine phosphate and pentaerythritol/polyurethane composite charring agent. Macromol. Mater. Eng. 292, 206–213 (2007)CrossRef M. Liu, Y. Liu, Q. Wang, Flame-retarded poly(propylene) with melamine phosphate and pentaerythritol/polyurethane composite charring agent. Macromol. Mater. Eng. 292, 206–213 (2007)CrossRef
39.
go back to reference W.Y. Chen, Y.Z. Wang, F.C. Chang, Thermal and flame retardation properties of melamine phosphate-modified epoxy resins. J. Polym. Res. 11, 109–117 (2004)CrossRef W.Y. Chen, Y.Z. Wang, F.C. Chang, Thermal and flame retardation properties of melamine phosphate-modified epoxy resins. J. Polym. Res. 11, 109–117 (2004)CrossRef
40.
go back to reference Q. Tang, R. Yang, Y. Song, J. He, Investigations of flame-retarded thermoplastic poly(imide–urethane)s with intumescent flame retardants. Ind. Eng. Chem. Res. 53, 9728–9737 (2014)CrossRef Q. Tang, R. Yang, Y. Song, J. He, Investigations of flame-retarded thermoplastic poly(imide–urethane)s with intumescent flame retardants. Ind. Eng. Chem. Res. 53, 9728–9737 (2014)CrossRef
41.
go back to reference P. Lv, Z. Wang, K. Hu, W. Fan, Flammability and thermal degradation of flame retarded polypropylene composites containing melamine phosphate and pentaerythritol derivatives. Polym. Degrad. Stab. 90, 523–534 (2005)CrossRef P. Lv, Z. Wang, K. Hu, W. Fan, Flammability and thermal degradation of flame retarded polypropylene composites containing melamine phosphate and pentaerythritol derivatives. Polym. Degrad. Stab. 90, 523–534 (2005)CrossRef
42.
go back to reference S.H. Chiu, W.K. Wang, Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer 39, 1951–1955 (1998)CrossRef S.H. Chiu, W.K. Wang, Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer 39, 1951–1955 (1998)CrossRef
43.
go back to reference Z.B. Shao, C. Deng, Y. Tan, M.J. Chen, L. Chen, Y.Z. Wang, An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application. ACS Appl. Mater. Interfaces 6, 7363–7370 (2014)PubMedCrossRef Z.B. Shao, C. Deng, Y. Tan, M.J. Chen, L. Chen, Y.Z. Wang, An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application. ACS Appl. Mater. Interfaces 6, 7363–7370 (2014)PubMedCrossRef
44.
go back to reference W.H. Rao, Z.Y. Hu, H.X. Xu, Y.J. Xu, M. Qi, W. Liao, S. Xu, Y.Z. Wang, Flame retardant flexible polyurethane foams with highly efficient melamine salt. Ind. Eng. Chem. Res. 56, 7112–7119 (2017)CrossRef W.H. Rao, Z.Y. Hu, H.X. Xu, Y.J. Xu, M. Qi, W. Liao, S. Xu, Y.Z. Wang, Flame retardant flexible polyurethane foams with highly efficient melamine salt. Ind. Eng. Chem. Res. 56, 7112–7119 (2017)CrossRef
45.
go back to reference M.J. Chen, Y.J. Xu, W.H. Rao, J.Q. Huang, X.L. Wang, L. Chen, Y.Z. Wang, Influence of valence and structure of phosphorus-containing melamine salts on the decomposition and fire behaviors of flexible polyurethane foams. Ind. Eng. Chem. Res. 53, 8773–8783 (2014)CrossRef M.J. Chen, Y.J. Xu, W.H. Rao, J.Q. Huang, X.L. Wang, L. Chen, Y.Z. Wang, Influence of valence and structure of phosphorus-containing melamine salts on the decomposition and fire behaviors of flexible polyurethane foams. Ind. Eng. Chem. Res. 53, 8773–8783 (2014)CrossRef
46.
go back to reference S. Giraud, S. Bourbigot, M. Rochery, I. Vroman, L. Tighzert, R. Delobel, F. Poutch, Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polym. Degrad. Stab. 88, 106–113 (2005)CrossRef S. Giraud, S. Bourbigot, M. Rochery, I. Vroman, L. Tighzert, R. Delobel, F. Poutch, Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polym. Degrad. Stab. 88, 106–113 (2005)CrossRef
47.
go back to reference S. Giraud, S. Bourbigot, M. Rochery, I. Vroman, L. Tighzert, R. Delobel, Flame behavior of cotton coated with polyurethane containing microencapsulated flame retardant agent. J. Ind. Text. 31, 11–26 (2001)CrossRef S. Giraud, S. Bourbigot, M. Rochery, I. Vroman, L. Tighzert, R. Delobel, Flame behavior of cotton coated with polyurethane containing microencapsulated flame retardant agent. J. Ind. Text. 31, 11–26 (2001)CrossRef
48.
go back to reference S. Zhou, H. Lu, L. Song, Z. Wang, Y. Hu, J. Ni, W. Xing, Microencapsulated ammonium polyphosphate with polyurethane shell: application to flame retarded polypropylene/ethylene-propylene diene terpolymer blends. J. Macromol. Sci. Part A 46, 136–144 (2008)CrossRef S. Zhou, H. Lu, L. Song, Z. Wang, Y. Hu, J. Ni, W. Xing, Microencapsulated ammonium polyphosphate with polyurethane shell: application to flame retarded polypropylene/ethylene-propylene diene terpolymer blends. J. Macromol. Sci. Part A 46, 136–144 (2008)CrossRef
49.
go back to reference J. Ni, L. Song, Y. Hu, P. Zhang, W. Xing, Preparation and characterization of microencapsulated ammonium polyphosphate with polyurethane shell by in situ polymerization and its flame retardance in polyurethane. Polym. Adv. Technol. 20, 999–1005 (2009)CrossRef J. Ni, L. Song, Y. Hu, P. Zhang, W. Xing, Preparation and characterization of microencapsulated ammonium polyphosphate with polyurethane shell by in situ polymerization and its flame retardance in polyurethane. Polym. Adv. Technol. 20, 999–1005 (2009)CrossRef
50.
go back to reference Y. Liu, M. Liu, D. Xie, Q. Wang, Thermoplastic polyurethane-encapsulated melamine phosphate flame retardant polyoxymethylene. Polym. Plast. Technol. Eng. 47, 330–334 (2008)CrossRef Y. Liu, M. Liu, D. Xie, Q. Wang, Thermoplastic polyurethane-encapsulated melamine phosphate flame retardant polyoxymethylene. Polym. Plast. Technol. Eng. 47, 330–334 (2008)CrossRef
51.
go back to reference J. Imuta, N. Kashiwa, S. Ota, S. Moriya, T. Nobori, K. Mizutani, Polar group-containing olefin copolymer, process for preparing the same, thermoplastic resin composition containing the copolymer, and uses thereof, Google Patents, 2010 J. Imuta, N. Kashiwa, S. Ota, S. Moriya, T. Nobori, K. Mizutani, Polar group-containing olefin copolymer, process for preparing the same, thermoplastic resin composition containing the copolymer, and uses thereof, Google Patents, 2010
52.
go back to reference K. Pielichowski, A. Leszczynska, Structure–property relationships in polyoxymethylene/thermoplastic polyurethane elastomer blends. J. Polym. Eng. 25, 359–373 (2005)CrossRef K. Pielichowski, A. Leszczynska, Structure–property relationships in polyoxymethylene/thermoplastic polyurethane elastomer blends. J. Polym. Eng. 25, 359–373 (2005)CrossRef
53.
go back to reference M. Mehrabzadeh, D. Rezaie, Impact modification of polyacetal by thermoplastic elastomer polyurethane. J. Appl. Polym. Sci. 84, 2573–2582 (2002)CrossRef M. Mehrabzadeh, D. Rezaie, Impact modification of polyacetal by thermoplastic elastomer polyurethane. J. Appl. Polym. Sci. 84, 2573–2582 (2002)CrossRef
54.
go back to reference K. Palanivelu, S. Balakrishnan, P. Rengasamy, Thermoplastic polyurethane toughened polyacetal blends. Polym. Test. 19, 75–83 (2000)CrossRef K. Palanivelu, S. Balakrishnan, P. Rengasamy, Thermoplastic polyurethane toughened polyacetal blends. Polym. Test. 19, 75–83 (2000)CrossRef
55.
go back to reference F.C. Chang, M.Y. Yang, J.S. Wu, Blends of polycarbonate and polyacetal. Polymer 32, 1394–1400 (1991)CrossRef F.C. Chang, M.Y. Yang, J.S. Wu, Blends of polycarbonate and polyacetal. Polymer 32, 1394–1400 (1991)CrossRef
56.
go back to reference H. Piechota, Some correlations between raw materials, formalation, and flame-retardant properties of rigid urethane foams. J. Cell. Plast. 1, 186–199 (1965)CrossRef H. Piechota, Some correlations between raw materials, formalation, and flame-retardant properties of rigid urethane foams. J. Cell. Plast. 1, 186–199 (1965)CrossRef
57.
go back to reference E.N. Peters, Flame‐retardant thermoplastics. I. Polyethylene–red phosphorus. J. Appl. Polym. Sci. 24, 1457–1464 (1979)CrossRef E.N. Peters, Flame‐retardant thermoplastics. I. Polyethylene–red phosphorus. J. Appl. Polym. Sci. 24, 1457–1464 (1979)CrossRef
58.
go back to reference C.S. Wang, J.Y. Shieh, Synthesis and properties of epoxy resins containing 2-(6-oxid-6H-dibenz[c,e] [1,2]oxaphosphorin-6-yl) 1,4-benzenediol. Polymer 39, 5819–5826 (1998)CrossRef C.S. Wang, J.Y. Shieh, Synthesis and properties of epoxy resins containing 2-(6-oxid-6H-dibenz[c,e] [1,2]oxaphosphorin-6-yl) 1,4-benzenediol. Polymer 39, 5819–5826 (1998)CrossRef
59.
go back to reference S. Toranosuke, Cyclic organophosphorus compounds and process for making same, Google Patents, 1972 S. Toranosuke, Cyclic organophosphorus compounds and process for making same, Google Patents, 1972
60.
go back to reference K.A. Salmeia, S. Gaan, An overview of some recent advances in DOPO-derivatives: chemistry and flame retardant applications. Polym. Degrad. Stab. 113, 119–134 (2015)CrossRef K.A. Salmeia, S. Gaan, An overview of some recent advances in DOPO-derivatives: chemistry and flame retardant applications. Polym. Degrad. Stab. 113, 119–134 (2015)CrossRef
61.
go back to reference T. Saito, Cyclic organophosphorus compounds and process for making them, U.S. Patent 3,702,878, 1972 T. Saito, Cyclic organophosphorus compounds and process for making them, U.S. Patent 3,702,878, 1972
62.
go back to reference J.L. Montchamp, Phosphinate chemistry in the 21st century: a viable alternative to the use of phosphorus trichloride in organophosphorus synthesis. Acc. Chem. Res. 47, 77–87 (2013)PubMedCrossRef J.L. Montchamp, Phosphinate chemistry in the 21st century: a viable alternative to the use of phosphorus trichloride in organophosphorus synthesis. Acc. Chem. Res. 47, 77–87 (2013)PubMedCrossRef
63.
go back to reference V.M. Chopdekar, A.R. Mellozzi, A.T. Cornelson, Flame-retardant cyanate esters, Google Patents, 2010 V.M. Chopdekar, A.R. Mellozzi, A.T. Cornelson, Flame-retardant cyanate esters, Google Patents, 2010
64.
go back to reference B. Xiong, R. Shen, M. Goto, S.F. Yin, L.B. Han, Highly selective 1,4‐ and 1,6‐addition of P(O)–H compounds to p‐quinones: a divergent method for the synthesis of C‐ and O‐phosphoryl hydroquinone derivatives. Chem.-A Eur. J. 18, 16902–16910 (2012)CrossRef B. Xiong, R. Shen, M. Goto, S.F. Yin, L.B. Han, Highly selective 1,4‐ and 1,6‐addition of P(O)–H compounds to p‐quinones: a divergent method for the synthesis of C‐ and O‐phosphoryl hydroquinone derivatives. Chem.-A Eur. J. 18, 16902–16910 (2012)CrossRef
65.
go back to reference X. Qian, L. Song, S. Jiang, G. Tang, W. Xing, B. Wang, Y. Hu, R.K. Yuen, Novel flame retardants containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and unsaturated bonds: synthesis, characterization, and application in the flame retardancy of epoxy acrylates. Ind. Eng. Chem. Res. 52, 7307–7315 (2013)CrossRef X. Qian, L. Song, S. Jiang, G. Tang, W. Xing, B. Wang, Y. Hu, R.K. Yuen, Novel flame retardants containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and unsaturated bonds: synthesis, characterization, and application in the flame retardancy of epoxy acrylates. Ind. Eng. Chem. Res. 52, 7307–7315 (2013)CrossRef
66.
go back to reference W. Xu, A. Wirasaputra, S. Liu, Y. Yuan, J. Zhao, Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polym. Degrad. Stab. 122, 44–51 (2015)CrossRef W. Xu, A. Wirasaputra, S. Liu, Y. Yuan, J. Zhao, Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polym. Degrad. Stab. 122, 44–51 (2015)CrossRef
67.
go back to reference Y.Q. Xiong, X.Y. Zhang, J. Liu, M.M. Li, F. Guo, X.N. Xia, W.J. Xu, Synthesis of novel phosphorus-containing epoxy hardeners and thermal stability and flame-retardant properties of cured products. J. Appl. Polym. Sci. 125, 1219–1225 (2012)CrossRef Y.Q. Xiong, X.Y. Zhang, J. Liu, M.M. Li, F. Guo, X.N. Xia, W.J. Xu, Synthesis of novel phosphorus-containing epoxy hardeners and thermal stability and flame-retardant properties of cured products. J. Appl. Polym. Sci. 125, 1219–1225 (2012)CrossRef
68.
go back to reference S. Yang, J. Wang, S. Huo, M. Wang, J. Wang, Preparation and flame retardancy of a compounded epoxy resin system composed of phosphorus/nitrogen-containing active compounds. Polym. Degrad. Stab. 121, 398–406 (2015)CrossRef S. Yang, J. Wang, S. Huo, M. Wang, J. Wang, Preparation and flame retardancy of a compounded epoxy resin system composed of phosphorus/nitrogen-containing active compounds. Polym. Degrad. Stab. 121, 398–406 (2015)CrossRef
69.
go back to reference Y.L. Liu, Flame-retardant epoxy resins from novel phosphorus-containing novolac. Polymer 42, 3445–3454 (2001)CrossRef Y.L. Liu, Flame-retardant epoxy resins from novel phosphorus-containing novolac. Polymer 42, 3445–3454 (2001)CrossRef
70.
go back to reference R.J. Jeng, S.M. Shau, J.J. Lin, W.C. Su, Y.S. Chiu, Flame retardant epoxy polymers based on all phosphorus-containing components. Eur. Polym. J. 38, 683–693 (2002)CrossRef R.J. Jeng, S.M. Shau, J.J. Lin, W.C. Su, Y.S. Chiu, Flame retardant epoxy polymers based on all phosphorus-containing components. Eur. Polym. J. 38, 683–693 (2002)CrossRef
71.
go back to reference Y. Zhang, B. Yu, B. Wang, K.M. Liew, L. Song, C. Wang, Y. Hu, Highly effective P-P synergy of a novel DOPO-based flame retardant for epoxy resin. Ind. Eng. Chem. Res. 56, 1245–1255 (2017)CrossRef Y. Zhang, B. Yu, B. Wang, K.M. Liew, L. Song, C. Wang, Y. Hu, Highly effective P-P synergy of a novel DOPO-based flame retardant for epoxy resin. Ind. Eng. Chem. Res. 56, 1245–1255 (2017)CrossRef
72.
go back to reference C.S. Wu, Y.L. Liu, Y.S. Chiu, Preparation of phosphorous-containing poly(epichlorohydrin) and polyurethane from a novel synthesis route. J. Appl. Polym. Sci. 85, 2254–2259 (2002)CrossRef C.S. Wu, Y.L. Liu, Y.S. Chiu, Preparation of phosphorous-containing poly(epichlorohydrin) and polyurethane from a novel synthesis route. J. Appl. Polym. Sci. 85, 2254–2259 (2002)CrossRef
73.
go back to reference S. Gaan, S. Liang, H. Mispreuve, H. Perler, R. Naescher, M. Neisius, Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polym. Degrad. Stab. 113, 180–188 (2015)CrossRef S. Gaan, S. Liang, H. Mispreuve, H. Perler, R. Naescher, M. Neisius, Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polym. Degrad. Stab. 113, 180–188 (2015)CrossRef
74.
go back to reference P. Wang, Z. Cai, Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: thermal stability, flame retardancy and mechanism. Polym. Degrad. Stab. 137, 138–150 (2017)CrossRef P. Wang, Z. Cai, Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: thermal stability, flame retardancy and mechanism. Polym. Degrad. Stab. 137, 138–150 (2017)CrossRef
75.
go back to reference C.H. Lin, S.L. Chang, T.P. Wei, S.H. Ding, W.C. Su, Facile, one-pot synthesis of phosphinate-substituted bisphenol A and its alkaline-stable diglycidyl ether derivative. Polym. Degrad. Stab. 95, 1167–1176 (2010)CrossRef C.H. Lin, S.L. Chang, T.P. Wei, S.H. Ding, W.C. Su, Facile, one-pot synthesis of phosphinate-substituted bisphenol A and its alkaline-stable diglycidyl ether derivative. Polym. Degrad. Stab. 95, 1167–1176 (2010)CrossRef
76.
go back to reference S.X. Cai, C.H. Lin, Flame‐retardant epoxy resins with high glass‐transition temperatures from a novel trifunctional curing agent: dopotriol. J. Appl. Polym. Sci. Part A Polym. Chem. 43, 2862–2873 (2005)CrossRef S.X. Cai, C.H. Lin, Flame‐retardant epoxy resins with high glass‐transition temperatures from a novel trifunctional curing agent: dopotriol. J. Appl. Polym. Sci. Part A Polym. Chem. 43, 2862–2873 (2005)CrossRef
77.
go back to reference C.H. Lin, S.L. Chang, L.A. Peng, S.P. Peng, Y.H. Chuang, Organo-soluble phosphinated polyimides from asymmetric diamines. Polymer 51, 3899–3906 (2010)CrossRef C.H. Lin, S.L. Chang, L.A. Peng, S.P. Peng, Y.H. Chuang, Organo-soluble phosphinated polyimides from asymmetric diamines. Polymer 51, 3899–3906 (2010)CrossRef
78.
go back to reference S. Yang, J. Wang, S. Huo, M. Wang, L. Cheng, Synthesis of a phosphorus/nitrogen-containing additive with multifunctional groups and its flame-retardant effect in epoxy resin. Ind. Eng. Chem. Res. 54, 7777–7786 (2015)CrossRef S. Yang, J. Wang, S. Huo, M. Wang, L. Cheng, Synthesis of a phosphorus/nitrogen-containing additive with multifunctional groups and its flame-retardant effect in epoxy resin. Ind. Eng. Chem. Res. 54, 7777–7786 (2015)CrossRef
79.
go back to reference X. Liu, K.A. Salmeia, D. Rentsch, J. Hao, S. Gaan, Thermal decomposition and flammability of rigid PU foams containing some DOPO derivatives and other phosphorus compounds. J. Anal. Appl. Pyrolysis 124, 219–229 (2017)CrossRef X. Liu, K.A. Salmeia, D. Rentsch, J. Hao, S. Gaan, Thermal decomposition and flammability of rigid PU foams containing some DOPO derivatives and other phosphorus compounds. J. Anal. Appl. Pyrolysis 124, 219–229 (2017)CrossRef
80.
go back to reference X. Li, Z. Zhao, Y. Wang, H. Yan, X. Zhang, B. Xu, Highly efficient flame retardant, flexible, and strong adhesive intumescent coating on polypropylene using hyperbranched polyamide. Chem. Eng. J. 324, 237–250 (2017)CrossRef X. Li, Z. Zhao, Y. Wang, H. Yan, X. Zhang, B. Xu, Highly efficient flame retardant, flexible, and strong adhesive intumescent coating on polypropylene using hyperbranched polyamide. Chem. Eng. J. 324, 237–250 (2017)CrossRef
81.
go back to reference P.L. Kuo, J.M. Chang, T.L. Wang, Flame‐retarding materials—I. Syntheses and flame‐retarding property of alkylphosphate‐type polyols and corresponding polyurethanes. J. Appl. Polym. Sci. 69, 1635–1643 (1998)CrossRef P.L. Kuo, J.M. Chang, T.L. Wang, Flame‐retarding materials—I. Syntheses and flame‐retarding property of alkylphosphate‐type polyols and corresponding polyurethanes. J. Appl. Polym. Sci. 69, 1635–1643 (1998)CrossRef
82.
go back to reference D. Price, L.K. Cunliffe, K. Bullett, T.R. Hull, G.J. Milnes, J.R. Ebdon, B.J. Hunt, P. Joseph, Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems. Polym. Degrad. Stab. 92, 1101–1114 (2007)CrossRef D. Price, L.K. Cunliffe, K. Bullett, T.R. Hull, G.J. Milnes, J.R. Ebdon, B.J. Hunt, P. Joseph, Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems. Polym. Degrad. Stab. 92, 1101–1114 (2007)CrossRef
83.
go back to reference A. Lorenzetti, M. Modesti, S. Besco, D. Hrelja, S. Donadi, Influence of phosphorus valency on thermal behaviour of flame retarded polyurethane foams. Polym. Degrad. Stab. 96, 1455–1461 (2011)CrossRef A. Lorenzetti, M. Modesti, S. Besco, D. Hrelja, S. Donadi, Influence of phosphorus valency on thermal behaviour of flame retarded polyurethane foams. Polym. Degrad. Stab. 96, 1455–1461 (2011)CrossRef
84.
go back to reference H. Yang, L. Song, Q. Tai, X. Wang, B. Yu, Y. Yuan, Y. Hu, R.K. Yuen, Comparative study on the flame retarded efficiency of melamine phosphate, melamine phosphite and melamine hypophosphite on poly(butylene succinate) composites. Polym. Degrad. Stab. 105, 248–256 (2014)CrossRef H. Yang, L. Song, Q. Tai, X. Wang, B. Yu, Y. Yuan, Y. Hu, R.K. Yuen, Comparative study on the flame retarded efficiency of melamine phosphate, melamine phosphite and melamine hypophosphite on poly(butylene succinate) composites. Polym. Degrad. Stab. 105, 248–256 (2014)CrossRef
85.
go back to reference S. Levchik, G. Camino, L. Costa, M. Luda, Mechanistic study of thermal behaviour and combustion performance of carbon fibre-epoxy resin composites fire retarded with a phosphorus-based curing system. Polym. Degrad. Stab. 54, 317–322 (1996)CrossRef S. Levchik, G. Camino, L. Costa, M. Luda, Mechanistic study of thermal behaviour and combustion performance of carbon fibre-epoxy resin composites fire retarded with a phosphorus-based curing system. Polym. Degrad. Stab. 54, 317–322 (1996)CrossRef
86.
go back to reference P.L. Kuo, J.S. Wang, P.C. Chen, L.W. Chen, Flame‐retarding materials, 3. Tailor‐made thermal stability epoxy curing agents containing difunctional phosphoric amide groups. Macromol. Chem. Phy. 202, 2175–2180 (2001)CrossRef P.L. Kuo, J.S. Wang, P.C. Chen, L.W. Chen, Flame‐retarding materials, 3. Tailor‐made thermal stability epoxy curing agents containing difunctional phosphoric amide groups. Macromol. Chem. Phy. 202, 2175–2180 (2001)CrossRef
87.
go back to reference U. Braun, A.I. Balabanovich, B. Schartel, U. Knoll, J. Artner, M. Ciesielski, M. Döring, R. Perez, J.K. Sandler, V. Altstädt, Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer 47, 8495–8508 (2006)CrossRef U. Braun, A.I. Balabanovich, B. Schartel, U. Knoll, J. Artner, M. Ciesielski, M. Döring, R. Perez, J.K. Sandler, V. Altstädt, Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer 47, 8495–8508 (2006)CrossRef
88.
go back to reference K.C. Cheng, S.Y. Yu, W.Y. Chiu, Thermal properties of side-chain phosphorus-containing epoxide cured with amine. J. Appl. Polym. Sci. 83, 2741–2748 (2002)CrossRef K.C. Cheng, S.Y. Yu, W.Y. Chiu, Thermal properties of side-chain phosphorus-containing epoxide cured with amine. J. Appl. Polym. Sci. 83, 2741–2748 (2002)CrossRef
89.
go back to reference T. Mariappan, Y. Zhou, J. Hao, C.A. Wilkie, Influence of oxidation state of phosphorus on the thermal and flammability of polyurea and epoxy resin. Eur. Polym. J. 49, 3171–3180 (2013)CrossRef T. Mariappan, Y. Zhou, J. Hao, C.A. Wilkie, Influence of oxidation state of phosphorus on the thermal and flammability of polyurea and epoxy resin. Eur. Polym. J. 49, 3171–3180 (2013)CrossRef
90.
go back to reference H.P.N. Allcock, Compounds (Academic Press, New York, 1972) H.P.N. Allcock, Compounds (Academic Press, New York, 1972)
91.
go back to reference D. Tate, Polyphosphazene elastomers, J. Polym. Sci.: Polym. Symp. 48, 33–45 (1974) D. Tate, Polyphosphazene elastomers, J. Polym. Sci.: Polym. Symp. 48, 33–45 (1974)
92.
go back to reference H. Allcock, Phosphazene high polymers. Chem. Br. 10, 118–121 (1974) H. Allcock, Phosphazene high polymers. Chem. Br. 10, 118–121 (1974)
93.
go back to reference P. Potin, R. De Jaeger, Polyphosphazenes: synthesis, structures, properties, applications. Eur. Polym. J. 27, 341–348 (1991)CrossRef P. Potin, R. De Jaeger, Polyphosphazenes: synthesis, structures, properties, applications. Eur. Polym. J. 27, 341–348 (1991)CrossRef
94.
go back to reference C.W. Allen, The use of phosphazenes as fire resistant materials. J. Fire Flammabil. 11, 320–328 (1993)CrossRef C.W. Allen, The use of phosphazenes as fire resistant materials. J. Fire Flammabil. 11, 320–328 (1993)CrossRef
95.
go back to reference W.B. Mueller, Polyphosphazene foam—a new highly fire resistant thermal insulation. J. Cell. Plast. 22, 53–63 (1986)CrossRef W.B. Mueller, Polyphosphazene foam—a new highly fire resistant thermal insulation. J. Cell. Plast. 22, 53–63 (1986)CrossRef
96.
go back to reference E. Quinn, R. Dieck, Flame and smoke properties of the polyphosphazenes. II. 1:1-poly/aryloxyphosphazene/ copolymers. J. Fire Flammabil. 7, 358–367 (1976) E. Quinn, R. Dieck, Flame and smoke properties of the polyphosphazenes. II. 1:1-poly/aryloxyphosphazene/ copolymers. J. Fire Flammabil. 7, 358–367 (1976)
97.
go back to reference A. DiEdwardo, F. Zitomer, D. Stuetz, R. Singler, D. Macaione, Flame-retardant characteristics of polyorganophosphazenes in polymeric substrates, in Abstracts of Paper of the American Chemical Society, AMER Chemical Society, Washington, DC, 1976, p. 115 A. DiEdwardo, F. Zitomer, D. Stuetz, R. Singler, D. Macaione, Flame-retardant characteristics of polyorganophosphazenes in polymeric substrates, in Abstracts of Paper of the American Chemical Society, AMER Chemical Society, Washington, DC, 1976, p. 115
98.
go back to reference H. Penton, Polyphosphazenes: Performance Polymers for Specialty Applications (ACS Publications, 1988) H. Penton, Polyphosphazenes: Performance Polymers for Specialty Applications (ACS Publications, 1988)
99.
go back to reference H.R. Allcock, The synthesis of functional polyphosphazenes and their surfaces. Appl. Organomet. Chem. 12, 659–666 (1998)CrossRef H.R. Allcock, The synthesis of functional polyphosphazenes and their surfaces. Appl. Organomet. Chem. 12, 659–666 (1998)CrossRef
100.
go back to reference H.R. Allcock, Inorganic–organic polymers. Adv. Mater. 6, 106–115 (1994)CrossRef H.R. Allcock, Inorganic–organic polymers. Adv. Mater. 6, 106–115 (1994)CrossRef
101.
go back to reference D. Mathew, C.P.R. Nair, K.N. Ninan, Phosphazene–triazine cyclomatrix network polymers: some aspects of synthesis, thermal- and flame-retardant characteristics. Polym. Int. 49, 48–56 (2000)CrossRef D. Mathew, C.P.R. Nair, K.N. Ninan, Phosphazene–triazine cyclomatrix network polymers: some aspects of synthesis, thermal- and flame-retardant characteristics. Polym. Int. 49, 48–56 (2000)CrossRef
102.
go back to reference F.F. Stewart, M.K. Harrup, Phosphazene monomers from the regiospecific reaction of tert-butylhydroquinone with hexachlorocyclotriphosphazene: a new composite material precursor. J. Appl. Polym. Sci. 72, 1085–1090 (1999)CrossRef F.F. Stewart, M.K. Harrup, Phosphazene monomers from the regiospecific reaction of tert-butylhydroquinone with hexachlorocyclotriphosphazene: a new composite material precursor. J. Appl. Polym. Sci. 72, 1085–1090 (1999)CrossRef
103.
go back to reference Y. Chen-Yang, J. Chuang, Y. Yang, C. Li, Y. Chiu, New UV-curable cyclotriphosphazenes as fire-retardant coating materials for wood. J. Appl. Polym. Sci. 69, 115–122 (1998)CrossRef Y. Chen-Yang, J. Chuang, Y. Yang, C. Li, Y. Chiu, New UV-curable cyclotriphosphazenes as fire-retardant coating materials for wood. J. Appl. Polym. Sci. 69, 115–122 (1998)CrossRef
104.
go back to reference I. Dez, R. De Jaeger, Organic–inorganic polymers: synthesis and characterization of cyclophosphazene-substituted polyurethanes. J. Inorg. Organomet. Polym. 6, 111–121 (1996)CrossRef I. Dez, R. De Jaeger, Organic–inorganic polymers: synthesis and characterization of cyclophosphazene-substituted polyurethanes. J. Inorg. Organomet. Polym. 6, 111–121 (1996)CrossRef
105.
go back to reference I. Dez, R.D. Jaeger, A new cyclolinear phosphazene polyurethane: synthesis from a diisocyanate and a bis-spiro-substituted cyclotriphosphazene diol. Phosphorus Sulfur Silicon Relat. Elem. 130, 1–14 (1997)CrossRef I. Dez, R.D. Jaeger, A new cyclolinear phosphazene polyurethane: synthesis from a diisocyanate and a bis-spiro-substituted cyclotriphosphazene diol. Phosphorus Sulfur Silicon Relat. Elem. 130, 1–14 (1997)CrossRef
106.
go back to reference Z. Li, J. Qin, Synthesis of C60-containing polyphosphazenes from a new reactive macromolecular intermediate: polyphosphazene azides. J. Polym. Sci. Part A: Polym. Chem. 42, 194–199 (2004)CrossRef Z. Li, J. Qin, Synthesis of C60-containing polyphosphazenes from a new reactive macromolecular intermediate: polyphosphazene azides. J. Polym. Sci. Part A: Polym. Chem. 42, 194–199 (2004)CrossRef
107.
go back to reference I. Dez, N. Henry, R. De Jaeger, New heat-resistant polyurethanes prepared from hydroxylated cyclotriphosphazenes. Polym. Degrd. Stab. 64, 433–437 (1999)CrossRef I. Dez, N. Henry, R. De Jaeger, New heat-resistant polyurethanes prepared from hydroxylated cyclotriphosphazenes. Polym. Degrd. Stab. 64, 433–437 (1999)CrossRef
108.
go back to reference Y. Chen-Yang, C. Yuan, C. Li, H. Yang, Preparation and characterization of novel flame retardant (aliphatic phosphate) cyclotriphosphazene-containing polyurethanes. J. Appl. Polym. Sci. 90, 1357–1364 (2003)CrossRef Y. Chen-Yang, C. Yuan, C. Li, H. Yang, Preparation and characterization of novel flame retardant (aliphatic phosphate) cyclotriphosphazene-containing polyurethanes. J. Appl. Polym. Sci. 90, 1357–1364 (2003)CrossRef
109.
go back to reference C. Yuan, S. Chen, C. Tsai, Y. Chiu, Y. Chen-Yang, Thermally stable and flame-retardant aromatic phosphate and cyclotriphosphazene-containing polyurethanes: synthesis and properties. Polym. Adv. Technol. 16, 393–399 (2005)CrossRef C. Yuan, S. Chen, C. Tsai, Y. Chiu, Y. Chen-Yang, Thermally stable and flame-retardant aromatic phosphate and cyclotriphosphazene-containing polyurethanes: synthesis and properties. Polym. Adv. Technol. 16, 393–399 (2005)CrossRef
110.
go back to reference P. Jiang, X. Gu, S. Zhang, S. Wu, Q. Zhao, Z. Hu, Synthesis, characterization, and utilization of a novel phosphorus/nitrogen-containing flame retardant. Ind. Eng. Chem. Res. 54, 2974–2982 (2015)CrossRef P. Jiang, X. Gu, S. Zhang, S. Wu, Q. Zhao, Z. Hu, Synthesis, characterization, and utilization of a novel phosphorus/nitrogen-containing flame retardant. Ind. Eng. Chem. Res. 54, 2974–2982 (2015)CrossRef
111.
go back to reference Y. Chen-Yang, H. Lee, C. Yuan, A flame‐retardant phosphate and cyclotriphosphazene‐containing epoxy resin: synthesis and properties. J. Polym. Sci. Part A: Polym. Chem. 38, 972–981 (2000)CrossRef Y. Chen-Yang, H. Lee, C. Yuan, A flame‐retardant phosphate and cyclotriphosphazene‐containing epoxy resin: synthesis and properties. J. Polym. Sci. Part A: Polym. Chem. 38, 972–981 (2000)CrossRef
112.
go back to reference R. Yang, W. Hu, L. Xu, Y. Song, J. Li, Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate. Polym. Degrad. Stab. 122, 102–109 (2015)CrossRef R. Yang, W. Hu, L. Xu, Y. Song, J. Li, Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate. Polym. Degrad. Stab. 122, 102–109 (2015)CrossRef
113.
go back to reference H. Liu, X. Wang, D. Wu, Novel cyclotriphosphazene-based epoxy compound and its application in halogen-free epoxy thermosetting systems: synthesis, curing behaviors, and flame retardancy. Polym. Degrad. Stab. 103, 96–112 (2014)CrossRef H. Liu, X. Wang, D. Wu, Novel cyclotriphosphazene-based epoxy compound and its application in halogen-free epoxy thermosetting systems: synthesis, curing behaviors, and flame retardancy. Polym. Degrad. Stab. 103, 96–112 (2014)CrossRef
114.
go back to reference J. Li, F. Pan, H. Xu, L. Zhang, Y. Zhong, Z. Mao, The flame-retardancy and anti-dripping properties of novel poly(ethylene terephthalate)/cyclotriphosphazene/silicone composites. Polym. Degrad. Stab. 110, 268–277 (2014)CrossRef J. Li, F. Pan, H. Xu, L. Zhang, Y. Zhong, Z. Mao, The flame-retardancy and anti-dripping properties of novel poly(ethylene terephthalate)/cyclotriphosphazene/silicone composites. Polym. Degrad. Stab. 110, 268–277 (2014)CrossRef
115.
go back to reference W.K. Huang, K.J. Chen, J.T. Yeh, K.N. Chen, Curing and combustion properties of a PU-coating system with UV-reactive phosphazene. J. Appl. Polym. Sci. 85, 1980–1991 (2002)CrossRef W.K. Huang, K.J. Chen, J.T. Yeh, K.N. Chen, Curing and combustion properties of a PU-coating system with UV-reactive phosphazene. J. Appl. Polym. Sci. 85, 1980–1991 (2002)CrossRef
116.
go back to reference F. Liu, H. Wei, X. Huang, J. Zhang, Y. Zhou, X. Tang, Preparation and properties of novel inherent flame-retardant cyclotriphosphazene-containing epoxy resins. J. Macromol. Sci. Part B 49, 1002–1011 (2010)CrossRef F. Liu, H. Wei, X. Huang, J. Zhang, Y. Zhou, X. Tang, Preparation and properties of novel inherent flame-retardant cyclotriphosphazene-containing epoxy resins. J. Macromol. Sci. Part B 49, 1002–1011 (2010)CrossRef
117.
go back to reference J. Verkade, L. Reynolds, The synthesis of a novel ester of phosphorus and of arsenic. J. Org. Chem. 25, 663–665 (1960)CrossRef J. Verkade, L. Reynolds, The synthesis of a novel ester of phosphorus and of arsenic. J. Org. Chem. 25, 663–665 (1960)CrossRef
118.
go back to reference X. Li, Y.X. Ou, Y.H. Zhang, D.J. Lian, Synthesis and structure of a novel caged bicyclic phosphate flame retardant. Chin. Chem. Lett. 11, 887–890 (2000) X. Li, Y.X. Ou, Y.H. Zhang, D.J. Lian, Synthesis and structure of a novel caged bicyclic phosphate flame retardant. Chin. Chem. Lett. 11, 887–890 (2000)
119.
go back to reference Y. Ou, X. Li, Study on polypropylene flame-retarded with intumescent flame retardants containing caged bicyclic phosphates. Polym. Mater. Sci. Eng. 19, 6–10 (2001) Y. Ou, X. Li, Study on polypropylene flame-retarded with intumescent flame retardants containing caged bicyclic phosphates. Polym. Mater. Sci. Eng. 19, 6–10 (2001)
120.
go back to reference R.P. Ranaweera, G. Scott, Mechanisms of antioxidant action: antioxidant behaviour of nickel complex UV stabilisers. Eur. Polym. J. 12, 825–830 (1976)CrossRef R.P. Ranaweera, G. Scott, Mechanisms of antioxidant action: antioxidant behaviour of nickel complex UV stabilisers. Eur. Polym. J. 12, 825–830 (1976)CrossRef
121.
go back to reference J. Holcik, M. Kosik, A. Benbow, C. Cullis, The oxidative thermal degradation of polypropylene and the influence of transition metal chelates. Eur. Polym. J. 14, 769–772 (1978)CrossRef J. Holcik, M. Kosik, A. Benbow, C. Cullis, The oxidative thermal degradation of polypropylene and the influence of transition metal chelates. Eur. Polym. J. 14, 769–772 (1978)CrossRef
122.
go back to reference A. Benbow, C. Cullis, H. Laver, Effects of metal chelates on the oxidation of polyolefins at high temperatures. Polymer 19, 824–828 (1978)CrossRef A. Benbow, C. Cullis, H. Laver, Effects of metal chelates on the oxidation of polyolefins at high temperatures. Polymer 19, 824–828 (1978)CrossRef
123.
go back to reference F. Xie, Y.Z. Wang, B. Yang, Y. Liu, A novel intumescent flame-retardant polyethylene system. Macromol. Mater. Eng. 291, 247–253 (2006)CrossRef F. Xie, Y.Z. Wang, B. Yang, Y. Liu, A novel intumescent flame-retardant polyethylene system. Macromol. Mater. Eng. 291, 247–253 (2006)CrossRef
124.
go back to reference W. Jiang, F.L. Jin, S.J. Park, Synthesis of a novel phosphorus-nitrogen-containing intumescent flame retardant and its application to fabrics. J. Ind. Eng. Chem. 27, 40–43 (2015)CrossRef W. Jiang, F.L. Jin, S.J. Park, Synthesis of a novel phosphorus-nitrogen-containing intumescent flame retardant and its application to fabrics. J. Ind. Eng. Chem. 27, 40–43 (2015)CrossRef
125.
go back to reference F. Gao, L. Tong, Z. Fang, Effect of a novel phosphorous–nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym. Degrad. Stab. 91, 1295–1299 (2006)CrossRef F. Gao, L. Tong, Z. Fang, Effect of a novel phosphorous–nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym. Degrad. Stab. 91, 1295–1299 (2006)CrossRef
126.
go back to reference X. Lai, S. Tang, H. Li, X. Zeng, Flame-retardant mechanism of a novel polymeric intumescent flame retardant containing caged bicyclic phosphate for polypropylene. Polym. Degrad. Stab. 113, 22–31 (2015)CrossRef X. Lai, S. Tang, H. Li, X. Zeng, Flame-retardant mechanism of a novel polymeric intumescent flame retardant containing caged bicyclic phosphate for polypropylene. Polym. Degrad. Stab. 113, 22–31 (2015)CrossRef
127.
go back to reference H.Q. Peng, D.Y. Wang, Q. Zhou, Y.Z. Wang, An S- and P-containing flame retardant for polypropylene. Chin. J. Polym. Sci. 26, 299–309 (2008)CrossRef H.Q. Peng, D.Y. Wang, Q. Zhou, Y.Z. Wang, An S- and P-containing flame retardant for polypropylene. Chin. J. Polym. Sci. 26, 299–309 (2008)CrossRef
128.
go back to reference Z. Fang, P. Song, L. Tong, Z. Guo, Thermal degradation and flame retardancy of polypropylene/C60 nanocomposites. Thermochim. Acta 473, 106–108 (2008)CrossRef Z. Fang, P. Song, L. Tong, Z. Guo, Thermal degradation and flame retardancy of polypropylene/C60 nanocomposites. Thermochim. Acta 473, 106–108 (2008)CrossRef
129.
go back to reference P.A. Song, H. Liu, Y. Shen, B. Du, Z. Fang, Y. Wu, Fabrication of dendrimer-like fullerene (C60)-decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocomposites. J. Mater. Chem. 19, 1305–1313 (2009)CrossRef P.A. Song, H. Liu, Y. Shen, B. Du, Z. Fang, Y. Wu, Fabrication of dendrimer-like fullerene (C60)-decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocomposites. J. Mater. Chem. 19, 1305–1313 (2009)CrossRef
130.
go back to reference J.-P. Hu, D. Li, Y. Qin, X.-Y. Wang, Promotion effect of melamine on flame retardancy of epoxy resins containing caged bicyclic phosphate. Chin. J. Polym. Sci. 25, 581–588 (2007)CrossRef J.-P. Hu, D. Li, Y. Qin, X.-Y. Wang, Promotion effect of melamine on flame retardancy of epoxy resins containing caged bicyclic phosphate. Chin. J. Polym. Sci. 25, 581–588 (2007)CrossRef
131.
go back to reference Y. Halpern, D.M. Mott, R.H. Niswander, Fire retardancy of thermoplastic materials by intumescence. Ind. Eng. Chem. Prod. Res. Dev. 23, 233–238 (1984)CrossRef Y. Halpern, D.M. Mott, R.H. Niswander, Fire retardancy of thermoplastic materials by intumescence. Ind. Eng. Chem. Prod. Res. Dev. 23, 233–238 (1984)CrossRef
132.
go back to reference K. Studer, C. Decker, E. Beck, R. Schwalm, Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I. Prog. Org. Coat. 48, 92–100 (2003)CrossRef K. Studer, C. Decker, E. Beck, R. Schwalm, Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I. Prog. Org. Coat. 48, 92–100 (2003)CrossRef
133.
go back to reference H. Kim, M.W. Urban, Molecular level chain scission mechanisms of epoxy and urethane polymeric films exposed to UV/H2O. Multidimensional spectroscopic studies. Langmuir 16, 5382–5390 (2000)CrossRef H. Kim, M.W. Urban, Molecular level chain scission mechanisms of epoxy and urethane polymeric films exposed to UV/H2O. Multidimensional spectroscopic studies. Langmuir 16, 5382–5390 (2000)CrossRef
134.
go back to reference V. Kumar, Y. Bhardwaj, N. Goel, S. Francis, K. Dubey, C. Chaudhari, K. Sarma, S. Sabharwal, Coating characteristics of electron beam cured Bisphenol A diglycidyl ether diacrylate-co-aliphatic urethane diacrylate resins. Surf. Coat. Technol. 202, 5202–5209 (2008)CrossRef V. Kumar, Y. Bhardwaj, N. Goel, S. Francis, K. Dubey, C. Chaudhari, K. Sarma, S. Sabharwal, Coating characteristics of electron beam cured Bisphenol A diglycidyl ether diacrylate-co-aliphatic urethane diacrylate resins. Surf. Coat. Technol. 202, 5202–5209 (2008)CrossRef
135.
go back to reference J.T. Yeh, Y.C. Shu, Characteristics of the degradation and improvement of the thermal stability of poly(siloxane urethane) copolymers. J. Appl. Polym. Sci. 115, 2616–2628 (2010)CrossRef J.T. Yeh, Y.C. Shu, Characteristics of the degradation and improvement of the thermal stability of poly(siloxane urethane) copolymers. J. Appl. Polym. Sci. 115, 2616–2628 (2010)CrossRef
136.
go back to reference F.S. Yen, L.L. Lin, J.L. Hong, Hydrogen-bond interactions between urethane–urethane and urethane–ester linkages in a liquid crystalline poly(ester–urethane). Macromolecules 32, 3068–3079 (1999)CrossRef F.S. Yen, L.L. Lin, J.L. Hong, Hydrogen-bond interactions between urethane–urethane and urethane–ester linkages in a liquid crystalline poly(ester–urethane). Macromolecules 32, 3068–3079 (1999)CrossRef
137.
go back to reference L. Chen, Q. Tai, L. Song, W. Xing, G. Jie, Y. Hu, Thermal properties and flame retardancy of an ether-type UV-cured polyurethane coating. Express Polym. Lett. 4, 539–550 (2010)CrossRef L. Chen, Q. Tai, L. Song, W. Xing, G. Jie, Y. Hu, Thermal properties and flame retardancy of an ether-type UV-cured polyurethane coating. Express Polym. Lett. 4, 539–550 (2010)CrossRef
138.
go back to reference X. Qian, Q. Tai, L. Song, R. Yuen, Thermal degradation and flame-retardant properties of epoxy acrylate resins modified with a novel flame retardant containing phosphorous and nitrogen. Fire Saf. Sci. 11, 883–894 (2014)CrossRef X. Qian, Q. Tai, L. Song, R. Yuen, Thermal degradation and flame-retardant properties of epoxy acrylate resins modified with a novel flame retardant containing phosphorous and nitrogen. Fire Saf. Sci. 11, 883–894 (2014)CrossRef
139.
go back to reference L. Chen, L. Song, P. Lv, G. Jie, Q. Tai, W. Xing, Y. Hu, A new intumescent flame retardant containing phosphorus and nitrogen: preparation, thermal properties and application to UV curable coating. Prog. Org. Coat. 70, 59–66 (2011)CrossRef L. Chen, L. Song, P. Lv, G. Jie, Q. Tai, W. Xing, Y. Hu, A new intumescent flame retardant containing phosphorus and nitrogen: preparation, thermal properties and application to UV curable coating. Prog. Org. Coat. 70, 59–66 (2011)CrossRef
140.
go back to reference X. Chen, Y. Hu, C. Jiao, L. Song, Thermal and UV-curing behavior of phosphate diacrylate used for flame retardant coatings. Prog. Org. Coat. 59, 318–323 (2007)CrossRef X. Chen, Y. Hu, C. Jiao, L. Song, Thermal and UV-curing behavior of phosphate diacrylate used for flame retardant coatings. Prog. Org. Coat. 59, 318–323 (2007)CrossRef
141.
go back to reference H. Liang, W. Shi, Thermal behaviour and degradation mechanism of phosphate di/triacrylate used for UV curable flame-retardant coatings. Polym. Degrad. Stab. 84, 525–532 (2004)CrossRef H. Liang, W. Shi, Thermal behaviour and degradation mechanism of phosphate di/triacrylate used for UV curable flame-retardant coatings. Polym. Degrad. Stab. 84, 525–532 (2004)CrossRef
142.
go back to reference G. Matuschek, Thermal degradation of different fire retardant polyurethane foams. Thermochim. Acta 263, 59–71 (1995)CrossRef G. Matuschek, Thermal degradation of different fire retardant polyurethane foams. Thermochim. Acta 263, 59–71 (1995)CrossRef
143.
go back to reference L. Jiao, H. Xiao, Q. Wang, J. Sun, Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym. Degrad. Stab. 98, 2687–2696 (2013)CrossRef L. Jiao, H. Xiao, Q. Wang, J. Sun, Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym. Degrad. Stab. 98, 2687–2696 (2013)CrossRef
144.
go back to reference Y.L. Liu, Y.C. Chiu, C.S. Wu, Preparation of silicon-/phosphorous-containing epoxy resins from the fusion process to bring a synergistic effect on improving the resins’ thermal stability and flame retardancy. J. Appl. Polym. Sci. 87, 404–411 (2003)CrossRef Y.L. Liu, Y.C. Chiu, C.S. Wu, Preparation of silicon-/phosphorous-containing epoxy resins from the fusion process to bring a synergistic effect on improving the resins’ thermal stability and flame retardancy. J. Appl. Polym. Sci. 87, 404–411 (2003)CrossRef
145.
go back to reference Y.L. Liu, C.S. Wu, Y.S. Chiu, W.H. Ho, Preparation, thermal properties, and flame retardance of epoxy–silica hybrid resins. J. Polym. Sci. Part A: Polym. Chem. 41, 2354–2367 (2003)CrossRef Y.L. Liu, C.S. Wu, Y.S. Chiu, W.H. Ho, Preparation, thermal properties, and flame retardance of epoxy–silica hybrid resins. J. Polym. Sci. Part A: Polym. Chem. 41, 2354–2367 (2003)CrossRef
146.
go back to reference M. Neisius, S. Liang, H. Mispreuve, S. Gaan, Phosphoramidate-containing flame-retardant flexible polyurethane foams. Ind. Eng. Chem. Res. 52, 9752–9762 (2013)CrossRef M. Neisius, S. Liang, H. Mispreuve, S. Gaan, Phosphoramidate-containing flame-retardant flexible polyurethane foams. Ind. Eng. Chem. Res. 52, 9752–9762 (2013)CrossRef
147.
go back to reference X. Chen, Y. Hu, C. Jiao, L. Song, Preparation and thermal properties of a novel flame-retardant coating. Polym. Degrad. Stab. 92, 1141–1150 (2007)CrossRef X. Chen, Y. Hu, C. Jiao, L. Song, Preparation and thermal properties of a novel flame-retardant coating. Polym. Degrad. Stab. 92, 1141–1150 (2007)CrossRef
148.
go back to reference X. Chen, Y. Hu, L. Song, Thermal behaviors of a novel UV cured flame retardant coatings containing phosphorus, nitrogen and silicon. Polym. Eng. Sci. 48, 116–123 (2008)CrossRef X. Chen, Y. Hu, L. Song, Thermal behaviors of a novel UV cured flame retardant coatings containing phosphorus, nitrogen and silicon. Polym. Eng. Sci. 48, 116–123 (2008)CrossRef
149.
go back to reference G.H. Hsiue, Y.L. Liu, J. Tsiao, Phosphorus-containing epoxy resins for flame retardancy V: synergistic effect of phosphorus–silicon on flame retardancy. J. Appl. Polym. Sci. 78, 1–7 (2000)CrossRef G.H. Hsiue, Y.L. Liu, J. Tsiao, Phosphorus-containing epoxy resins for flame retardancy V: synergistic effect of phosphorus–silicon on flame retardancy. J. Appl. Polym. Sci. 78, 1–7 (2000)CrossRef
150.
go back to reference C.S. Wu, Y.L. Liu, Y.S. Chiu, Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents. Polymer 43, 4277–4284 (2002)CrossRef C.S. Wu, Y.L. Liu, Y.S. Chiu, Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents. Polymer 43, 4277–4284 (2002)CrossRef
151.
go back to reference S.-W. Zhu, W.-F. Shi, Flame retardant mechanism of hyperbranched polyurethane acrylates used for UV curable flame retardant coatings. Polym. Degrad. Stab. 75, 543–547 (2002)CrossRef S.-W. Zhu, W.-F. Shi, Flame retardant mechanism of hyperbranched polyurethane acrylates used for UV curable flame retardant coatings. Polym. Degrad. Stab. 75, 543–547 (2002)CrossRef
152.
go back to reference T. Randoux, J.C. Vanovervelt, H. Van den Bergen, G. Camino, Halogen-free flame retardant radiation curable coatings. Prog. Org. Coat. 45, 281–289 (2002)CrossRef T. Randoux, J.C. Vanovervelt, H. Van den Bergen, G. Camino, Halogen-free flame retardant radiation curable coatings. Prog. Org. Coat. 45, 281–289 (2002)CrossRef
153.
go back to reference Z. Bai, L. Song, Y. Hu, R.K. Yuen, Preparation, flame retardancy, and thermal degradation of unsaturated polyester resin modified with a novel phosphorus containing acrylate. Ind. Eng. Chem. Res. 52, 12855–12864 (2013)CrossRef Z. Bai, L. Song, Y. Hu, R.K. Yuen, Preparation, flame retardancy, and thermal degradation of unsaturated polyester resin modified with a novel phosphorus containing acrylate. Ind. Eng. Chem. Res. 52, 12855–12864 (2013)CrossRef
Metadata
Title
Types of Flame Retardants Used for the Synthesis of Flame-Retardant Polymers
Authors
Suprakas Sinha Ray
Malkappa Kuruma
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-35491-6_4

Premium Partners