Skip to main content
Top

2014 | OriginalPaper | Chapter

3. Types of Information Splitting and Sharing Techniques

Authors : Marek R. Ogiela, Urszula Ogiela

Published in: Secure Information Management Using Linguistic Threshold Approach

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Of the many topics which information management is concerned with, one important problem is ensuring the partial or complete confidentiality of, and the selective access by authorised persons to information resources. These problems become particularly significant for important information which is vital to the development of the company or for in-house secrets of a given corporation. As such data is frequently stored in a digital format on company computers, it becomes necessary to develop new solutions and procedures facilitating sharing such important information between persons belonging to authorised bodies (e.g. board members or groups of people given access to such information). Such opportunities for managing information arise due to the use of certain mathematical techniques originating in the fields of cryptography and steganography. However, these fields are focused on ways of encrypting information (cryptography) or hiding it (steganography), [1]. In this case, we are looking for formulas allowing information (sometimes also confidential) to be split in a way that makes its retrieval possible only for authorised persons. Information undergoing this procedure may be secret or overt, but with the reservation that it can be reconstructed only as a result of the joint action of the group of persons authorised to do so. Secret information may be split, for instance, within institutions or groups securing the operations of the state [2, 3]. Information of a lower confidentiality level may be split within corporations or even small enterprises. The techniques discussed here are universal and can be applied to any type of information that can be presented in an electronic format.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Cryptography – deals with encrypting and decrypting information so that it can be legible only to authorised persons. Cryptography assumes the use of a special algorithm linking original data with one or more keys known only to the sender and receiver. As a result, an encrypted text (a cryptogram) is produced, which can only be read after entering the key.
 
2
Steganography – hiding a given message in the form of another message or a legible text, a graphic, sound or video file. Steganography techniques are frequently used as an alternative to cryptographic techniques, but differ from the latter, because only the fact of hiding the message is hidden, while the message carrier is legible. A lay person is not aware that there is some secret communication, known only to the correct transmission recipient. This makes steganography a popular technique for hiding information.
 
Literature
1.
go back to reference Menezes, A., van Oorschot, P., & Vanstone, S. (2001). Handbook of applied cryptography. Waterloo: CRC Press. Menezes, A., van Oorschot, P., & Vanstone, S. (2001). Handbook of applied cryptography. Waterloo: CRC Press.
2.
go back to reference Ogiela, M. R., & Ogiela, U. (2010). The use of mathematical linguistic methods in creating secret sharing threshold algorithms. Computers & Mathematics with Applications, 60(2), 267–271.MathSciNetMATHCrossRef Ogiela, M. R., & Ogiela, U. (2010). The use of mathematical linguistic methods in creating secret sharing threshold algorithms. Computers & Mathematics with Applications, 60(2), 267–271.MathSciNetMATHCrossRef
3.
go back to reference Ogiela, M. R., & Ogiela, U. (2012). Linguistic protocols for secure information management and sharing. Computers & Mathematics with Applications, 63(2), 564–572.MathSciNetCrossRef Ogiela, M. R., & Ogiela, U. (2012). Linguistic protocols for secure information management and sharing. Computers & Mathematics with Applications, 63(2), 564–572.MathSciNetCrossRef
4.
go back to reference Schneier, B. (1996). Applied cryptography: Protocols, algorithms, and source code in C. New York: Wiley.MATH Schneier, B. (1996). Applied cryptography: Protocols, algorithms, and source code in C. New York: Wiley.MATH
5.
go back to reference Blakley, G. R. (1979). Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference (pp. 313–317), New York. Blakley, G. R. (1979). Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference (pp. 313–317), New York.
7.
go back to reference Ogiela, M. R., & Ogiela, U. (2012). DNA-like linguistic secret sharing for strategic information systems. International Journal of Information Management, 32, 175–181.CrossRef Ogiela, M. R., & Ogiela, U. (2012). DNA-like linguistic secret sharing for strategic information systems. International Journal of Information Management, 32, 175–181.CrossRef
8.
go back to reference Seberry, J., & Pieprzyk, J. (1989). Cryptography: An introduction to computer security. Englewood Cliffs: Prentice-Hall.MATH Seberry, J., & Pieprzyk, J. (1989). Cryptography: An introduction to computer security. Englewood Cliffs: Prentice-Hall.MATH
9.
go back to reference Tang, S. (2004). Simple secret sharing and threshold RSA signature schemes. Journal of Information and Computational Science, 1, 259–262. Tang, S. (2004). Simple secret sharing and threshold RSA signature schemes. Journal of Information and Computational Science, 1, 259–262.
10.
go back to reference Asmuth, C., & Bloom, J. (1983). A modular approach to key safeguarding. IEEE Transactions on Information Theory, 29, 208–210.MathSciNetCrossRef Asmuth, C., & Bloom, J. (1983). A modular approach to key safeguarding. IEEE Transactions on Information Theory, 29, 208–210.MathSciNetCrossRef
11.
go back to reference Karnin, E. D., Greene, J. W., & Hellman, M. E. (1983). On sharing secret systems. IEEE Transactions on Information Theory, 29, 35–41.MathSciNetMATHCrossRef Karnin, E. D., Greene, J. W., & Hellman, M. E. (1983). On sharing secret systems. IEEE Transactions on Information Theory, 29, 35–41.MathSciNetMATHCrossRef
12.
go back to reference Hang, N., & Zhao, W. (2007). Privacy-preserving data mining systems. Computer, 40(4), 52–58.CrossRef Hang, N., & Zhao, W. (2007). Privacy-preserving data mining systems. Computer, 40(4), 52–58.CrossRef
13.
go back to reference Tompa, M., & Woll, H. (1988). How to share a secret with cheaters. Journal of Cryptology, 2, 133–138.MathSciNet Tompa, M., & Woll, H. (1988). How to share a secret with cheaters. Journal of Cryptology, 2, 133–138.MathSciNet
14.
go back to reference Martin, K. M. (1993). Untrustworthy participants in perfect secret sharing schemes (Cryptography and coding III, pp. 255–264). Oxford: Clarendon Press. Martin, K. M. (1993). Untrustworthy participants in perfect secret sharing schemes (Cryptography and coding III, pp. 255–264). Oxford: Clarendon Press.
15.
go back to reference Ateniese, G., Blundo, C., de Santis, A., & Stinson, D. R. (1996). Visual cryptography for general access structures. Information and Computation, 129, 86–106.MathSciNetMATHCrossRef Ateniese, G., Blundo, C., de Santis, A., & Stinson, D. R. (1996). Visual cryptography for general access structures. Information and Computation, 129, 86–106.MathSciNetMATHCrossRef
16.
go back to reference Ateniese, G., Blundo, C., de Santis, A., & Stinson, D. R. (1996). Constructions and bounds for visual cryptography. Lecture Notes in Computer Science, 1099, 416–28.CrossRef Ateniese, G., Blundo, C., de Santis, A., & Stinson, D. R. (1996). Constructions and bounds for visual cryptography. Lecture Notes in Computer Science, 1099, 416–28.CrossRef
17.
go back to reference Beguin, P., & Cresti, A. (1995). General short computational secret sharing schemes. Lecture Notes in Computer Science, 921, 194–208.CrossRef Beguin, P., & Cresti, A. (1995). General short computational secret sharing schemes. Lecture Notes in Computer Science, 921, 194–208.CrossRef
18.
19.
go back to reference ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31, 469–472.MathSciNetMATHCrossRef ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31, 469–472.MathSciNetMATHCrossRef
20.
go back to reference Li, H., & Singhal, M. (2007). Trust management in distributed systems. Computer, 40(2), 45–53.CrossRef Li, H., & Singhal, M. (2007). Trust management in distributed systems. Computer, 40(2), 45–53.CrossRef
21.
go back to reference Ogiela, L. (2009). UBIAS systems for cognitive interpretation and analysis of medical images. Opto-Electronics Review, 17(2), 166–179.CrossRef Ogiela, L. (2009). UBIAS systems for cognitive interpretation and analysis of medical images. Opto-Electronics Review, 17(2), 166–179.CrossRef
22.
go back to reference Ogiela, L., & Ogiela, M. R. (2012). Advances in cognitive information systems (Cognitive systems monographs, Vol. 17). Berlin/Heidelberg: Springer.MATHCrossRef Ogiela, L., & Ogiela, M. R. (2012). Advances in cognitive information systems (Cognitive systems monographs, Vol. 17). Berlin/Heidelberg: Springer.MATHCrossRef
23.
go back to reference Ong, H., Schnorr, C. P., & Shamir, A. (1985). Efficient signature schemes based on polynomial equations. In: Advances in Cryptology Proceedings of CRYPTO’84 (pp. 37–46), Springer, New York. Ong, H., Schnorr, C. P., & Shamir, A. (1985). Efficient signature schemes based on polynomial equations. In: Advances in Cryptology Proceedings of CRYPTO’84 (pp. 37–46), Springer, New York.
24.
go back to reference Simmons, G. J. (1992). An introduction to shared secret and/or shared control schemes and their application. In Contemporary cryptology: The science of information integrity (pp. 441–497). Piscataway: IEEE Press. Simmons, G. J. (1992). An introduction to shared secret and/or shared control schemes and their application. In Contemporary cryptology: The science of information integrity (pp. 441–497). Piscataway: IEEE Press.
25.
go back to reference Simmons, G. J. (1994). Subliminal channels: Past and present. European Transactions on Telecommunications, 5, 459–473.CrossRef Simmons, G. J. (1994). Subliminal channels: Past and present. European Transactions on Telecommunications, 5, 459–473.CrossRef
26.
go back to reference Simmons, G. J. (1993). The subliminal channels of the US digital signature algorithm (DSA). In: Proceedings of the Third Symposium on State and Progress of Research in Cryptography (pp. 35–54). Rome. Simmons, G. J. (1993). The subliminal channels of the US digital signature algorithm (DSA). In: Proceedings of the Third Symposium on State and Progress of Research in Cryptography (pp. 35–54). Rome.
27.
go back to reference van Dijk, M. (1995). On the information rate of perfect secret sharing schemes. Designs, Codes and Cryptography, 6, 143–169.MATHCrossRef van Dijk, M. (1995). On the information rate of perfect secret sharing schemes. Designs, Codes and Cryptography, 6, 143–169.MATHCrossRef
28.
go back to reference Wang, S. J., Tsai, Y. R., & Chen, P. Y. (2007). Proactive (k, n) threshold secret sharing scheme with variant k and n. In: Proceedings of the IPC 2007 – The 2007 International Conference on Intelligent Pervasive Computing (pp. 117–120), October 11–13th, 2007. Jeju Island. Wang, S. J., Tsai, Y. R., & Chen, P. Y. (2007). Proactive (k, n) threshold secret sharing scheme with variant k and n. In: Proceedings of the IPC 2007 – The 2007 International Conference on Intelligent Pervasive Computing (pp. 117–120), October 11–13th, 2007. Jeju Island.
29.
go back to reference Wu, T. C., & He, W. H. (1995). A geometric approach for sharing secrets. Computers and Security, 14, 135–146.CrossRef Wu, T. C., & He, W. H. (1995). A geometric approach for sharing secrets. Computers and Security, 14, 135–146.CrossRef
30.
go back to reference Zheng, Y., Hardjono, T., & Seberry, J. (1994). Reusing shares in secret sharing schemes. Computer, 37, 199–205. Zheng, Y., Hardjono, T., & Seberry, J. (1994). Reusing shares in secret sharing schemes. Computer, 37, 199–205.
Metadata
Title
Types of Information Splitting and Sharing Techniques
Authors
Marek R. Ogiela
Urszula Ogiela
Copyright Year
2014
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5016-9_3

Premium Partner