Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Designs, Codes and Cryptography 2-3/2019

01-10-2018

Types of spreads and duality of the parallelisms of PG(3, 5) with automorphisms of order 13

Authors: Svetlana Topalova, Stela Zhelezova

Published in: Designs, Codes and Cryptography | Issue 2-3/2019

Login to get access

Abstract

A spread is a set of lines of PG(nq) which partition the point set. A parallelism is a partition of the set of all lines by spreads. Empirical data on parallelisms is of interest both from theoretical point of view, and for different applications. Only 51 explicit examples of parallelisms of PG(3, 5) have been known. We construct all (321) parallelisms of PG(3, 5) with automorphisms of order 13 and classify them by the order of their automorphism group, the number of reguli in their spreads and duality. There are no regular ones among them. There are 19 self-dual parallelisms. We also claim that PG(3, 5) has no point-transitive parallelisms.
Literature
1.
go back to reference Baker R.D.: Partitioning the planes of \(AG_{2m}(2)\) into 2-designs. Discret. Math. 15, 205–211 (1976). CrossRefMATH Baker R.D.: Partitioning the planes of \(AG_{2m}(2)\) into 2-designs. Discret. Math. 15, 205–211 (1976). CrossRefMATH
3.
go back to reference Baker R.D., Ebert G.L.: Regulus-free spreads of \(PG(3, q)\). Des. Codes Cryptogr. 8(1–2), 79–89 (1996). MathSciNetMATH Baker R.D., Ebert G.L.: Regulus-free spreads of \(PG(3, q)\). Des. Codes Cryptogr. 8(1–2), 79–89 (1996). MathSciNetMATH
5.
go back to reference Bassalygo L.A., Zinoviev V.A.: Remark on balanced incomplete block designs, near-resolvable block designs, and q-ary constant-weight codes. Probl. Inf. Trans. 53(1), 51–54 (2017). MathSciNetCrossRefMATH Bassalygo L.A., Zinoviev V.A.: Remark on balanced incomplete block designs, near-resolvable block designs, and q-ary constant-weight codes. Probl. Inf. Trans. 53(1), 51–54 (2017). MathSciNetCrossRefMATH
9.
go back to reference Caliski T., Kageyama S.: On the analysis of experiments in affine resolvable designs. J. Stat. Plan. Inference 138(11), 3350–3356 (2008). MathSciNetCrossRefMATH Caliski T., Kageyama S.: On the analysis of experiments in affine resolvable designs. J. Stat. Plan. Inference 138(11), 3350–3356 (2008). MathSciNetCrossRefMATH
10.
11.
go back to reference Denniston R.H.F.: Some packings of projective spaces. Atti Acc. Naz. Lincei Rend. 52(8), 36–40 (1972). MathSciNetMATH Denniston R.H.F.: Some packings of projective spaces. Atti Acc. Naz. Lincei Rend. 52(8), 36–40 (1972). MathSciNetMATH
12.
go back to reference Denniston R.H.F.: Cyclic packings of the projective space of order 8. Atti Acc. Naz. Lincei Rend. Cl. Sci. Fix. Mat. Natur. 54, 373–377 (1973). MathSciNetMATH Denniston R.H.F.: Cyclic packings of the projective space of order 8. Atti Acc. Naz. Lincei Rend. Cl. Sci. Fix. Mat. Natur. 54, 373–377 (1973). MathSciNetMATH
15.
19.
go back to reference Glynn D.: On a set of lines of \(PG(3, q)\) corresponding to a maximal cap contained in the Klein quadric of \(PG(5, q)\). Geom. Dedic. 26(3), 273–280 (1988). MathSciNetCrossRefMATH Glynn D.: On a set of lines of \(PG(3, q)\) corresponding to a maximal cap contained in the Klein quadric of \(PG(5, q)\). Geom. Dedic. 26(3), 273–280 (1988). MathSciNetCrossRefMATH
22.
go back to reference Hishida T., Jimbo M.: Possible patterns of cyclic resolutions of the BIB design associated with \(PG(7,2)\). Congr. Numer. 131, 179–186 (1998). MathSciNetMATH Hishida T., Jimbo M.: Possible patterns of cyclic resolutions of the BIB design associated with \(PG(7,2)\). Congr. Numer. 131, 179–186 (1998). MathSciNetMATH
23.
go back to reference Johnson N.L.: Subplane Covered Nets, vol. 222. Monographs and Textbooks in Pure and Applied MathematicsMarcel Dekker, New York (2000). CrossRefMATH Johnson N.L.: Subplane Covered Nets, vol. 222. Monographs and Textbooks in Pure and Applied MathematicsMarcel Dekker, New York (2000). CrossRefMATH
24.
go back to reference Johnson N.L.: Some new classes of finite parallelisms. Note Mat. 20(2), 77–88 (2000/2001). Johnson N.L.: Some new classes of finite parallelisms. Note Mat. 20(2), 77–88 (2000/2001).
26.
27.
28.
go back to reference Johnson S., Weller S.: Resolvable 2-designs for regular low density parity-check codes. IEEE Trans. Commun. 51(9), 1413–1419 (2003). CrossRef Johnson S., Weller S.: Resolvable 2-designs for regular low density parity-check codes. IEEE Trans. Commun. 51(9), 1413–1419 (2003). CrossRef
29.
go back to reference Kurosawa K., Kageyama S.: New bound for affine resolvable designs and its application to authentication codes. In: Du D.Z., Li M. (eds.) Computing and Combinatorics. COCOON 1995. Lecture Notes in Computer Science, vol 959. Springer, Berlin, Heidelberg (1995). Kurosawa K., Kageyama S.: New bound for affine resolvable designs and its application to authentication codes. In: Du D.Z., Li M. (eds.) Computing and Combinatorics. COCOON 1995. Lecture Notes in Computer Science, vol 959. Springer, Berlin, Heidelberg (1995).
30.
go back to reference Koetter R., Kschischang F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54, 3579–3591 (2008). MathSciNetCrossRefMATH Koetter R., Kschischang F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54, 3579–3591 (2008). MathSciNetCrossRefMATH
32.
go back to reference Olmez O., Ramamoorthy A.: Fractional repetition codes with flexible repair from combinatorial designs. IEEE Trans. Inf. Theory 62(4), 1565–1591 (2016). MathSciNetCrossRefMATH Olmez O., Ramamoorthy A.: Fractional repetition codes with flexible repair from combinatorial designs. IEEE Trans. Inf. Theory 62(4), 1565–1591 (2016). MathSciNetCrossRefMATH
34.
go back to reference Prince A.R.: Parallelisms of \(PG(3,3)\) invariant under a collineation of order 5. In: Johnson N.L. (eds.) Mostly Finite Geometries. Lecture Notes Pure Applied Mathematics, vol 190, pp. 383–390. Marcel Dekker, New York (l997). Prince A.R.: Parallelisms of \(PG(3,3)\) invariant under a collineation of order 5. In: Johnson N.L. (eds.) Mostly Finite Geometries. Lecture Notes Pure Applied Mathematics, vol 190, pp. 383–390. Marcel Dekker, New York (l997).
36.
go back to reference Ruj S., Seberry J., Roy B.: Key predistribution schemes using block designs in wireless sensor networks. In: 12-th IEEE International Conference on Computational Science and Engineering (CSE), pp. 873–878 (2009). Ruj S., Seberry J., Roy B.: Key predistribution schemes using block designs in wireless sensor networks. In: 12-th IEEE International Conference on Computational Science and Engineering (CSE), pp. 873–878 (2009).
38.
go back to reference Semakov N., Zinovev V.: Equidistant q-ary codes with maximal distance and resolvable balanced incomplete block designs. Probl. Peredachi Inf. 4(2), 3–10 (1968). MathSciNetMATH Semakov N., Zinovev V.: Equidistant q-ary codes with maximal distance and resolvable balanced incomplete block designs. Probl. Peredachi Inf. 4(2), 3–10 (1968). MathSciNetMATH
39.
go back to reference Stinson D.R.: Combinatorial Designs: Constructions and Analysis. Springer, New York (2004). MATH Stinson D.R.: Combinatorial Designs: Constructions and Analysis. Springer, New York (2004). MATH
41.
go back to reference Storme L.: Finite Geometry. In: Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 702–729. CRC Press, Boca Raton (2006). Storme L.: Finite Geometry. In: Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 702–729. CRC Press, Boca Raton (2006).
42.
go back to reference Topalova S., Zhelezova S.: On transitive parallelisms of \(PG(3,4)\). Appl. Algebra Eng. Commun. Comput. 24(3–4), 159–164 (2013). MathSciNetCrossRefMATH Topalova S., Zhelezova S.: On transitive parallelisms of \(PG(3,4)\). Appl. Algebra Eng. Commun. Comput. 24(3–4), 159–164 (2013). MathSciNetCrossRefMATH
43.
go back to reference Topalova S., Zhelezova S.: On point-transitive and transitive deficiency one parallelisms of \(PG(3,4)\). Des. Codes Cryptogr. 75(1), 9–19 (2015). MathSciNetCrossRefMATH Topalova S., Zhelezova S.: On point-transitive and transitive deficiency one parallelisms of \(PG(3,4)\). Des. Codes Cryptogr. 75(1), 9–19 (2015). MathSciNetCrossRefMATH
45.
go back to reference White C.: Two cyclic arrangement problems in finite projective geometry: parallelisms and two-intersection set, PhD thesis, California Institute of Technology (2002). White C.: Two cyclic arrangement problems in finite projective geometry: parallelisms and two-intersection set, PhD thesis, California Institute of Technology (2002).
47.
go back to reference Zaitsev G., Zinoviev V., Semakov N.: Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double-error-correcting codes. In: Proceedings of Second International Symposium on Information Theory, (Armenia, USSR: Budapest. Academiai Kiado 257–263(1973) (1971). Zaitsev G., Zinoviev V., Semakov N.: Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double-error-correcting codes. In: Proceedings of Second International Symposium on Information Theory, (Armenia, USSR: Budapest. Academiai Kiado 257–263(1973) (1971).
48.
Metadata
Title
Types of spreads and duality of the parallelisms of PG(3, 5) with automorphisms of order 13
Authors
Svetlana Topalova
Stela Zhelezova
Publication date
01-10-2018
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 2-3/2019
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-018-0558-2

Other articles of this Issue 2-3/2019

Designs, Codes and Cryptography 2-3/2019 Go to the issue

Premium Partner