Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 1/2022

15-06-2022 | Original Paper

Ultra-compact with improved data rate optical encoder based on 2D linear photonic crystal ring resonator

Authors: Mayur Kumar Chhipa, B. T. P. Madhav, Bhuvneshwer Suthar, Vijay Janyani

Published in: Photonic Network Communications | Issue 1/2022

Login to get access
share
SHARE

Abstract

In the present work, a high-speed optical encoder is proposed based on two-dimensional photonic crystal ring resonator using coupled mode theory and resonance effect. Square-shaped ring resonator, couplings rods, and several waveguides have been utilized in the proposed structure. Silicon rods in air structure have been designed with rod radius of 0.1a and lattice constant ‘a’ as 540 nm. The photonic band gap is being calculated using plane wave expansion method and finite-difference-time-domain method to analyze the performance characteristics of optical encoder like transmission spectra, electric field view, contrast ratio, response time, etc. The operating wavelength of structure is 1550 nm, to perform encoder operation where only one input port is activated at a time while other input ports are inactivated, and accordingly equivalent binary encoded signal is produced at output ports. The proposed encoder is designed with fast response time 222.76 fs, high data rate of 4.48 Tbps, and ultra-compact size of 140.84 µm2. Hence the proposed device is suitable for high-speed optical computation as photonic integrated circuit.
Literature
1.
go back to reference Yabolnovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2159–2062 (1987) MathSciNetCrossRef Yabolnovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2159–2062 (1987) MathSciNetCrossRef
2.
go back to reference Shaik, E.H., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 48, 1–15 (2016) CrossRef Shaik, E.H., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 48, 1–15 (2016) CrossRef
3.
go back to reference Joannopoulos, J.D., Meade, R.D., Winn, J.N.: photonic crystals, molding the flow of light. Princeton University Press, Princeton (1995) MATH Joannopoulos, J.D., Meade, R.D., Winn, J.N.: photonic crystals, molding the flow of light. Princeton University Press, Princeton (1995) MATH
4.
go back to reference Suthar, B.: Tuning of guided mode in two dimensional chalcogenide based photonic crystal waveguide. Optik 126(22), 3429–3431 (2015) CrossRef Suthar, B.: Tuning of guided mode in two dimensional chalcogenide based photonic crystal waveguide. Optik 126(22), 3429–3431 (2015) CrossRef
5.
go back to reference Mohammadi, M., Seifouri, M.: Numerical investigation of photonic crystal ring resonators coupled bus waveguide as a highly sensitive platform. Photon. Nanostruct. Fundam. Appl. 34, 11–18 (2019) CrossRef Mohammadi, M., Seifouri, M.: Numerical investigation of photonic crystal ring resonators coupled bus waveguide as a highly sensitive platform. Photon. Nanostruct. Fundam. Appl. 34, 11–18 (2019) CrossRef
6.
go back to reference Radhouene, M., Chhipa, M.K., Najjar, M., Robinson, S., Suthar, B.: Novel design of ring resonator-based temperature sensor using photonics technology. Photon. Sens. 7(4), 311–316 (2017) CrossRef Radhouene, M., Chhipa, M.K., Najjar, M., Robinson, S., Suthar, B.: Novel design of ring resonator-based temperature sensor using photonics technology. Photon. Sens. 7(4), 311–316 (2017) CrossRef
7.
go back to reference Suthar, B., Kumar, N.: Magnetic sensor using extrinsic photonic crystal. Adv. Sci. Eng. Med. 10, 854–856 (2018) CrossRef Suthar, B., Kumar, N.: Magnetic sensor using extrinsic photonic crystal. Adv. Sci. Eng. Med. 10, 854–856 (2018) CrossRef
8.
go back to reference Ankita, Suthar, B., Bhargava, A.: Biosensor Application of One-Dimensional Photonic Crystal for Malaria Diagnosis, Plasmonics 16 (1), 59-63 (2021) Ankita, Suthar, B., Bhargava, A.: Biosensor Application of One-Dimensional Photonic Crystal for Malaria Diagnosis, Plasmonics 16 (1), 59-63 (2021)
9.
go back to reference Chhipa, M.K., Radhouene, M., Robinson, S., Suthar, B.: Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength division multiplexing application. Opt. Eng. 56(1), 015107 (2017) CrossRef Chhipa, M.K., Radhouene, M., Robinson, S., Suthar, B.: Improved dropping efficiency in two-dimensional photonic crystal-based channel drop filter for coarse wavelength division multiplexing application. Opt. Eng. 56(1), 015107 (2017) CrossRef
10.
go back to reference Chhipa, M.K., Radhouene, M., Dikshit, A., Robinson, S., Suthar, B.: Novel compact optical channel drop filter for CWDM optical network applications. Int. J. Photon. Opt. Technol. 2(4), 26–29 (2016) Chhipa, M.K., Radhouene, M., Dikshit, A., Robinson, S., Suthar, B.: Novel compact optical channel drop filter for CWDM optical network applications. Int. J. Photon. Opt. Technol. 2(4), 26–29 (2016)
11.
go back to reference Rajasekar, R., Robinson, S.: Nano-channel drop filter using photonic crystal ring resonator for dense wavelength division multiplexing systems. J. Nanoelectron. Optoelectron. 14, 753–758 (2019) CrossRef Rajasekar, R., Robinson, S.: Nano-channel drop filter using photonic crystal ring resonator for dense wavelength division multiplexing systems. J. Nanoelectron. Optoelectron. 14, 753–758 (2019) CrossRef
12.
go back to reference Mohammadi, M., Seifouri, M.: A new proposal for a high performance 4-channel demultiplexer based on 2D photonic crystal using three cascaded ring resonators for applications in advanced optical systems. Opt. Quantum Electron. 51(11), 350 (2019) CrossRef Mohammadi, M., Seifouri, M.: A new proposal for a high performance 4-channel demultiplexer based on 2D photonic crystal using three cascaded ring resonators for applications in advanced optical systems. Opt. Quantum Electron. 51(11), 350 (2019) CrossRef
13.
go back to reference Ooka, Y., et al.: Ultrasmall in-plane photonic crystal demultiplexers fabricated with photolithography. Opt. Express 25(2), 1521–1528 (2017) CrossRef Ooka, Y., et al.: Ultrasmall in-plane photonic crystal demultiplexers fabricated with photolithography. Opt. Express 25(2), 1521–1528 (2017) CrossRef
14.
go back to reference Olyaee, S., Seifouri, M., Mohebzadeh-Bahabady, A., Sardari, M.: Realization of all-optical NOT and XOR logic gates based on interference effect with high contrast ratio and ultra-compacted size. Opt. Quantum Electron. 50, 1–12 (2018) CrossRef Olyaee, S., Seifouri, M., Mohebzadeh-Bahabady, A., Sardari, M.: Realization of all-optical NOT and XOR logic gates based on interference effect with high contrast ratio and ultra-compacted size. Opt. Quantum Electron. 50, 1–12 (2018) CrossRef
15.
go back to reference Mostafa, T.S., Mohammed, N.A., El-Rabaie, E.S.M.: Ultra-High bit rate all-optical AND/OR logic gates based on photonic crystal with multi-wavelength simultaneous operation. J. Mod. Opt. 66, 1005–1016 (2019) CrossRef Mostafa, T.S., Mohammed, N.A., El-Rabaie, E.S.M.: Ultra-High bit rate all-optical AND/OR logic gates based on photonic crystal with multi-wavelength simultaneous operation. J. Mod. Opt. 66, 1005–1016 (2019) CrossRef
16.
go back to reference Radhouene, M., Najjar, M., Chhipa, M.K., Robinson, S., Suthar, B.: Design and analysis a thermo-optic switch based on photonic crystal ring resonator. Optik 172, 924–929 (2018) CrossRef Radhouene, M., Najjar, M., Chhipa, M.K., Robinson, S., Suthar, B.: Design and analysis a thermo-optic switch based on photonic crystal ring resonator. Optik 172, 924–929 (2018) CrossRef
17.
go back to reference Hoseini, M., Malekmohammad, M.: All-optical high performance graphene-photonic crystal switch. Opt. Commun. 383, 159–164 (2017) CrossRef Hoseini, M., Malekmohammad, M.: All-optical high performance graphene-photonic crystal switch. Opt. Commun. 383, 159–164 (2017) CrossRef
18.
go back to reference Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys. E Low-dimens. Syst. Nanostruct. 75, 77–85 (2016) CrossRef Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys. E Low-dimens. Syst. Nanostruct. 75, 77–85 (2016) CrossRef
19.
go back to reference Iman, O., Rafah, N.: A novel all optical 4 × 2 encoder switch based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 127(19), 7835–7841 (2016) CrossRef Iman, O., Rafah, N.: A novel all optical 4 × 2 encoder switch based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 127(19), 7835–7841 (2016) CrossRef
20.
go back to reference Gholamnejad, S., Zavvari, M.: Design and analysis of all-optical 4–2 binary encoder based on photonic crystal. Opt. Quantum Electron 49, 302–314 (2017) CrossRef Gholamnejad, S., Zavvari, M.: Design and analysis of all-optical 4–2 binary encoder based on photonic crystal. Opt. Quantum Electron 49, 302–314 (2017) CrossRef
21.
go back to reference Rajasekar, R., Thavasi Raja, G., Jayabarathan, J.K., et al.: High speed nano-optical encoder using photonic crystal ring resonator. Photon Netw Commun 40, 31–39 (2020) CrossRef Rajasekar, R., Thavasi Raja, G., Jayabarathan, J.K., et al.: High speed nano-optical encoder using photonic crystal ring resonator. Photon Netw Commun 40, 31–39 (2020) CrossRef
22.
go back to reference Seif-Dargahi, H.: Ultra-fast all-optical encoder using photonic crystal-based ring resonators. Photon. Netw. Commun. 36(2), 272–277 (2018) CrossRef Seif-Dargahi, H.: Ultra-fast all-optical encoder using photonic crystal-based ring resonators. Photon. Netw. Commun. 36(2), 272–277 (2018) CrossRef
23.
go back to reference Anagha, E.G., Rajesh, A., Saranya, D.: Design of an all-optical encoder using 2D photonic crystals. In: 2nd International Conference on Inventive Systems and Control Proceedings, pp. 55–59. IEEE (2018) Anagha, E.G., Rajesh, A., Saranya, D.: Design of an all-optical encoder using 2D photonic crystals. In: 2nd International Conference on Inventive Systems and Control Proceedings, pp. 55–59. IEEE (2018)
24.
go back to reference Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A proposal for 4-to-2 optical encoder based on photonic crystals. IET Opto. electron. 11(1), 29–35 (2017) CrossRef Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A proposal for 4-to-2 optical encoder based on photonic crystals. IET Opto. electron. 11(1), 29–35 (2017) CrossRef
25.
go back to reference Leung, K.M., Liu, Y.F.: Photon band structures: the plane-wave method. Phys. Rev. B 41, 10188–10190 (1990) CrossRef Leung, K.M., Liu, Y.F.: Photon band structures: the plane-wave method. Phys. Rev. B 41, 10188–10190 (1990) CrossRef
26.
go back to reference Taya, S.A., Doghmosh, N., Upadhyay, A.: Properties of defect modes and band gaps of mirror symmetric metal-dielectric 1D photonic crystals. Opt. Quant. Electron. 53, 35 (2021) CrossRef Taya, S.A., Doghmosh, N., Upadhyay, A.: Properties of defect modes and band gaps of mirror symmetric metal-dielectric 1D photonic crystals. Opt. Quant. Electron. 53, 35 (2021) CrossRef
27.
go back to reference Taya, S.A., Doghmosh, N., Abutailkh, M.A., Upadhyay, A., Nassar, Z.M., Colak, I.: Properties of band gap for p-polarized wave propagating in a binary superconductor -dielectric photonic crystal. Optik 243, 167505 (2021) Taya, S.A., Doghmosh, N., Abutailkh, M.A., Upadhyay, A., Nassar, Z.M., Colak, I.: Properties of band gap for p-polarized wave propagating in a binary superconductor -dielectric photonic crystal. Optik 243, 167505 (2021)
28.
go back to reference Jiang, L., Jia, W., Zheng, G., Li, X.: Design and fabrication of rod-type two-dimensional photonic crystal slabs with large high-order bandgaps in near-infrared wavelengths. Opt. Lett. 37, 1424–1426 (2012) CrossRef Jiang, L., Jia, W., Zheng, G., Li, X.: Design and fabrication of rod-type two-dimensional photonic crystal slabs with large high-order bandgaps in near-infrared wavelengths. Opt. Lett. 37, 1424–1426 (2012) CrossRef
29.
go back to reference Boscolo, S., Midiro, M., Someda, C.G.: Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides. IEEE J. Quant. Electron. 38, 47–53 (2002) CrossRef Boscolo, S., Midiro, M., Someda, C.G.: Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides. IEEE J. Quant. Electron. 38, 47–53 (2002) CrossRef
30.
go back to reference Botten, L.C., White, T.P., Asatryan, A.A., Langtry, T.N., de Sterke, C.M., McPhedran, R.C.: Bloch mode scattering matrix methods for modeling extended photonic crystal structures. Part I: theory. Phys. Rev. E 70, 056606 (2004) CrossRef Botten, L.C., White, T.P., Asatryan, A.A., Langtry, T.N., de Sterke, C.M., McPhedran, R.C.: Bloch mode scattering matrix methods for modeling extended photonic crystal structures. Part I: theory. Phys. Rev. E 70, 056606 (2004) CrossRef
31.
go back to reference White, T.P., Botten, L.C., de Sterke, C.M., McPhedran, R.C., Asatryan, A.A., Langtry, T.N.: Bloch mode scattering matrix methods for modeling extended photonic crystal structures. Part II: applications. Phys. Rev. E 70, 056607 (2004) CrossRef White, T.P., Botten, L.C., de Sterke, C.M., McPhedran, R.C., Asatryan, A.A., Langtry, T.N.: Bloch mode scattering matrix methods for modeling extended photonic crystal structures. Part II: applications. Phys. Rev. E 70, 056607 (2004) CrossRef
32.
go back to reference Naghizade, S., Khoshsima, H.: Low input power an all optical 4 × 2 encoder based on triangular lattice shape photonic crystal. J. Opt. Commun. 42(1), 17–24 (2021) CrossRef Naghizade, S., Khoshsima, H.: Low input power an all optical 4 × 2 encoder based on triangular lattice shape photonic crystal. J. Opt. Commun. 42(1), 17–24 (2021) CrossRef
33.
go back to reference Moniem, A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63(8), 735–741 (2015) CrossRef Moniem, A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63(8), 735–741 (2015) CrossRef
Metadata
Title
Ultra-compact with improved data rate optical encoder based on 2D linear photonic crystal ring resonator
Authors
Mayur Kumar Chhipa
B. T. P. Madhav
Bhuvneshwer Suthar
Vijay Janyani
Publication date
15-06-2022
Publisher
Springer US
Published in
Photonic Network Communications / Issue 1/2022
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-022-00975-x

Other articles of this Issue 1/2022

Photonic Network Communications 1/2022 Go to the issue