Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 24/2019

13-11-2019

Ultra-low remanence and weak magnetic agglomeration of superparamagnetic magnetite nanoparticles caused by high magnetic moment Tb3+ doping

Authors: Pengyu Gong, Qingyun Chen, Kaimin Shih, Changzhong Liao, Lielin Wang, Hua Xie, Sihao Deng

Published in: Journal of Materials Science: Materials in Electronics | Issue 24/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structure and magnetic properties of the magnetite can be substantial corrected by incorporating foreign cations. In this work, Tb3+ was successfully incorporated into magnetite and superparamagnetic magnetite nanoparticles were obtained, using solvothermal method. The doping of Tb3+ greatly reduces the Mr and Hc values of the magnetite. Due to the doping of high magnetic moment Tb3+, the original magnetic moment of the magnetite is destroyed and magnetic domain are decomposed, resulting in a significant reduction in remanence and magnetic agglomeration. The remarkable effect of Tb3+ doping degaussing will provide new prospects for the application of magnetite materials in the superparamagnetic direction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E.J. Verwey, P.W. Haayman, F.C. Romeijn, Physical properties and cation arrangement of oxides with spinel structures II. Electronic conductivity. J. Chem. Phys. 15, 181–187 (1947) E.J. Verwey, P.W. Haayman, F.C. Romeijn, Physical properties and cation arrangement of oxides with spinel structures II. Electronic conductivity. J. Chem. Phys. 15, 181–187 (1947)
2.
go back to reference Q.A. Pankhurst, J. Connolly, S.K. Jones, Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, R167 (2003) Q.A. Pankhurst, J. Connolly, S.K. Jones, Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, R167 (2003)
3.
go back to reference Y.P. Fu, Electrical conductivity and magnetic properties of Li0.5Fe2.5-xCrxO4 ferrite. Mater. Chem. Phys. 115, 334–338 (2009) Y.P. Fu, Electrical conductivity and magnetic properties of Li0.5Fe2.5-xCrxO4 ferrite. Mater. Chem. Phys. 115, 334–338 (2009)
4.
go back to reference R. Hergt, S. Dutz, R. Müller, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys.-Condes. Matter 18, S2919 (2006) R. Hergt, S. Dutz, R. Müller, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys.-Condes. Matter 18, S2919 (2006)
5.
go back to reference M. Mahmoudi, S. Sant, B. Wang, Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63, 24–46 (2011) M. Mahmoudi, S. Sant, B. Wang, Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63, 24–46 (2011)
6.
go back to reference A.F. Ngomsik, A. Bee, M. Draye, Magnetic nano-and microparticles for metal removal and environmental applications: a review. C. R. Chim. 8, 963–970 (2005) A.F. Ngomsik, A. Bee, M. Draye, Magnetic nano-and microparticles for metal removal and environmental applications: a review. C. R. Chim. 8, 963–970 (2005)
7.
go back to reference S. Rajput, C.U. Pittman, D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J. Colloid Interface Sci. 468, 334–346 (2015) S. Rajput, C.U. Pittman, D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J. Colloid Interface Sci. 468, 334–346 (2015)
8.
go back to reference L. Wang, Z. Yang, J. Gao, A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J. Am. Chem. Soc. 128, 13358–13359 (2006) L. Wang, Z. Yang, J. Gao, A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J. Am. Chem. Soc. 128, 13358–13359 (2006)
9.
go back to reference M. Liong, J. Lu, M. Kovochich, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2, 889–896 (2008) M. Liong, J. Lu, M. Kovochich, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2, 889–896 (2008)
10.
go back to reference O.E. Polozhentsev, S.P. Kubrin, V.V. Butova, Structure and magnetic properties of pure and samarium doped magnetite nanoparticles. J. Struct. Chem. 57, 1459–1468 (2016) O.E. Polozhentsev, S.P. Kubrin, V.V. Butova, Structure and magnetic properties of pure and samarium doped magnetite nanoparticles. J. Struct. Chem. 57, 1459–1468 (2016)
11.
go back to reference A. Lv, C. Hu, Y. Nie, Catalytic ozonation of toxic pollutants over magnetic cobalt-doped Fe3O4 suspensions. Appl. Catal. B 117, 246–252 (2012) A. Lv, C. Hu, Y. Nie, Catalytic ozonation of toxic pollutants over magnetic cobalt-doped Fe3O4 suspensions. Appl. Catal. B 117, 246–252 (2012)
12.
go back to reference T.A. Lastovina, A.P. Budnyk, E.A. Kudryavtsev, Solvothermal synthesis of Sm3+-doped Fe3O4 nanoparticles. Mater. Sci. Eng., C 80, 110–116 (2017) T.A. Lastovina, A.P. Budnyk, E.A. Kudryavtsev, Solvothermal synthesis of Sm3+-doped Fe3O4 nanoparticles. Mater. Sci. Eng., C 80, 110–116 (2017)
13.
go back to reference J. Choi, J.C. Kim, Y.B. Lee, Fabrication of silica-coated magnetic nanoparticles with highly photoluminescent lanthanide probes. Chem. Commun. 16, 1644–1646 (2007) J. Choi, J.C. Kim, Y.B. Lee, Fabrication of silica-coated magnetic nanoparticles with highly photoluminescent lanthanide probes. Chem. Commun. 16, 1644–1646 (2007)
14.
go back to reference G.K. Das, Y. Zhang, L. D’Silva, Single-phase Dy2O3: Tb3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging. Chem. Mater. 23, 2439–2446 (2011) G.K. Das, Y. Zhang, L. D’Silva, Single-phase Dy2O3: Tb3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging. Chem. Mater. 23, 2439–2446 (2011)
15.
go back to reference B.P. Jacob, S. Thankachan, S. Xavier, Effect of Tb3+ substitution on structural, electrical and magnetic properties of sol–gel synthesized nanocrystalline nickel ferrite. J. Alloys Compd. 578, 314–319 (2013) B.P. Jacob, S. Thankachan, S. Xavier, Effect of Tb3+ substitution on structural, electrical and magnetic properties of sol–gel synthesized nanocrystalline nickel ferrite. J. Alloys Compd. 578, 314–319 (2013)
16.
go back to reference J. Guo, C. Cui, W. Yang, Microstructures and magnetic properties of Tb-Fe-Co magnetic nanowire arrays prepared by electrochemical deposition. Superlattices Microstruct. 128, 298–306 (2019) J. Guo, C. Cui, W. Yang, Microstructures and magnetic properties of Tb-Fe-Co magnetic nanowire arrays prepared by electrochemical deposition. Superlattices Microstruct. 128, 298–306 (2019)
17.
go back to reference K.P. Rice, S.E. Russek, R.H. Geiss, Temperature-dependent structure of Tb-doped magnetite nanoparticles. Appl. Phys. Lett. 106, 062409 (2015) K.P. Rice, S.E. Russek, R.H. Geiss, Temperature-dependent structure of Tb-doped magnetite nanoparticles. Appl. Phys. Lett. 106, 062409 (2015)
18.
go back to reference H. Peng, G. Liu, X. Dong, Magnetic, luminescent and core-shell structured Fe3O4@YF3: Ce3+, Tb3+ bifunctional nanocomposites. Powder Technol. 215, 242–246 (2012) H. Peng, G. Liu, X. Dong, Magnetic, luminescent and core-shell structured Fe3O4@YF3: Ce3+, Tb3+ bifunctional nanocomposites. Powder Technol. 215, 242–246 (2012)
19.
go back to reference Z. Qi, T.P. Joshi, R. Liu, Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution. J. Hazard. Mater. 329, 193–204 (2017) Z. Qi, T.P. Joshi, R. Liu, Synthesis of Ce(III)-doped Fe3O4 magnetic particles for efficient removal of antimony from aqueous solution. J. Hazard. Mater. 329, 193–204 (2017)
20.
go back to reference M. Abareshi, E.K. Goharshadi, S.M. Zebarjad, Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J. Magn. Magn. Mater. 322, 3895–3901 (2010) M. Abareshi, E.K. Goharshadi, S.M. Zebarjad, Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J. Magn. Magn. Mater. 322, 3895–3901 (2010)
21.
go back to reference J.F.W. Bowles, The iron oxides: structure, properties reactions occurrence and uses. Mineral. Mag. 61, 740–741 (1997) J.F.W. Bowles, The iron oxides: structure, properties reactions occurrence and uses. Mineral. Mag. 61, 740–741 (1997)
22.
go back to reference G. Huang, H. Li, J. Chen, Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control. Nanoscale 6, 10404–10412 (2014) G. Huang, H. Li, J. Chen, Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control. Nanoscale 6, 10404–10412 (2014)
23.
go back to reference J. Liu, Y. Bin, M. Matsuo, Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size. J. Phys. Chem. C 116, 134–143 (2011) J. Liu, Y. Bin, M. Matsuo, Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size. J. Phys. Chem. C 116, 134–143 (2011)
24.
go back to reference D. Li, X. Zhang, J. Yao, Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chem. Commun. 47, 1710–1712 (2011) D. Li, X. Zhang, J. Yao, Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chem. Commun. 47, 1710–1712 (2011)
25.
go back to reference W. Zhao, Y. Wu, J. Xu, Retraction: effect of ethylene glycol on hydrothermal formation of calcium sulfate hemihydrate whiskers with high aspect ratios. RSC Adv. 6, 99639 (2016) W. Zhao, Y. Wu, J. Xu, Retraction: effect of ethylene glycol on hydrothermal formation of calcium sulfate hemihydrate whiskers with high aspect ratios. RSC Adv. 6, 99639 (2016)
26.
go back to reference N. Agasti, N.K. Kaushik, One pot synthesis of crystalline silver nanoparticles. Am. J. Nanomater. 2, 4–7 (2014) N. Agasti, N.K. Kaushik, One pot synthesis of crystalline silver nanoparticles. Am. J. Nanomater. 2, 4–7 (2014)
27.
go back to reference J. Mohapatra, A. Mitra, D. Bahadur, Surface controlled synthesis of MFe2O4 (M = Mn, Fe Co, Ni and Zn) nanoparticles and their magnetic characteristics. CrystEngComm 15, 524–532 (2013) J. Mohapatra, A. Mitra, D. Bahadur, Surface controlled synthesis of MFe2O4 (M = Mn, Fe Co, Ni and Zn) nanoparticles and their magnetic characteristics. CrystEngComm 15, 524–532 (2013)
28.
go back to reference K.N. Harish, H.S.B. Naik, P.N.P. Kumar, Optical and photocatalytic properties of CdFe2O4 nanocatalysts: potential application in water treatment under solar light irradiation. Arch. Appl. Sci. Res. 5, 42–51 (2013) K.N. Harish, H.S.B. Naik, P.N.P. Kumar, Optical and photocatalytic properties of CdFe2O4 nanocatalysts: potential application in water treatment under solar light irradiation. Arch. Appl. Sci. Res. 5, 42–51 (2013)
29.
go back to reference C.A. Quinto, P. Mohindra, S. Tong, Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7, 12728–12736 (2015) C.A. Quinto, P. Mohindra, S. Tong, Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7, 12728–12736 (2015)
30.
go back to reference I. Karimzadeh, M. Aghazadeh, T. Doroudi, Amino acid coated superparamagnetic iron oxide nanoparticles for biomedical applications through a novel efficient preparation method. J. Clust. Sci. 28, 1259–1271 (2017) I. Karimzadeh, M. Aghazadeh, T. Doroudi, Amino acid coated superparamagnetic iron oxide nanoparticles for biomedical applications through a novel efficient preparation method. J. Clust. Sci. 28, 1259–1271 (2017)
31.
go back to reference S. Anjum, R. Tufail, H. Saleem, Investigation of stability and magnetic properties of Ni-and Co-doped iron oxide nano-particles. J. Supercond. Nov. Magn. 30, 2291–2301 (2017) S. Anjum, R. Tufail, H. Saleem, Investigation of stability and magnetic properties of Ni-and Co-doped iron oxide nano-particles. J. Supercond. Nov. Magn. 30, 2291–2301 (2017)
32.
go back to reference W. Huan, G. Ji, C. Cheng, Preparation, characterization of high-luminescent and magnetic Eu3+, Dy3+ doped superparamagnetic nano-Fe3O4. J. Nanosci. Nanotechnol. 15, 1780–1788 (2015) W. Huan, G. Ji, C. Cheng, Preparation, characterization of high-luminescent and magnetic Eu3+, Dy3+ doped superparamagnetic nano-Fe3O4. J. Nanosci. Nanotechnol. 15, 1780–1788 (2015)
33.
go back to reference K. Haneda, A.H. Morrish, Noncollinear magnetic structure of CoFe2O4 small particles. J. Appl. Phys. 63, 4258–4260 (1988) K. Haneda, A.H. Morrish, Noncollinear magnetic structure of CoFe2O4 small particles. J. Appl. Phys. 63, 4258–4260 (1988)
34.
go back to reference M.X. Xu, Study of magnetic properties in ZnxFe3-xO4 composite magnetic fluids. Acta Phys.-Chim. Sin. 15, 619–623 (1999) M.X. Xu, Study of magnetic properties in ZnxFe3-xO4 composite magnetic fluids. Acta Phys.-Chim. Sin. 15, 619–623 (1999)
35.
go back to reference E. Talik, Magnetic and transport properties of the R3Ni system (R = Y, Gd, Tb, Dy, Ho, Er). Phys. B 193, 213–220 (1994) E. Talik, Magnetic and transport properties of the R3Ni system (R = Y, Gd, Tb, Dy, Ho, Er). Phys. B 193, 213–220 (1994)
36.
go back to reference L. Guo, X. Shen, X. Meng, Effect of Sm3+ ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers. J. Alloys Compd. 490, 301–306 (2010) L. Guo, X. Shen, X. Meng, Effect of Sm3+ ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers. J. Alloys Compd. 490, 301–306 (2010)
37.
go back to reference Q. Song, Z.J. Zhang, Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 126, 6164–6168 (2004) Q. Song, Z.J. Zhang, Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 126, 6164–6168 (2004)
38.
go back to reference J. C. Bonner, R. C. Ohandley, J. F. Janak, Annual Conference on Magnetism and Magnetic Materials, 26th, Dallas, Tex. November 11-14, 1980, Proceedings. J. Appl. Phys. 52, (1981) J. C. Bonner, R. C. Ohandley, J. F. Janak, Annual Conference on Magnetism and Magnetic Materials, 26th, Dallas, Tex. November 11-14, 1980, Proceedings. J. Appl. Phys. 52, (1981)
39.
go back to reference E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. A 240, 599–642 (1948) E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. A 240, 599–642 (1948)
40.
go back to reference X. Zhang, Y. Niu, X. Meng, Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres. CrystEngComm 15, 8166–8172 (2013) X. Zhang, Y. Niu, X. Meng, Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres. CrystEngComm 15, 8166–8172 (2013)
41.
go back to reference B. Zhai, Q. Ma, Y.M. Huang, Instability of the characteristic emissions of dopant Tb in ZnO hexagonal pyramids. J. Electron. Mater. 46, 947–954 (2017) B. Zhai, Q. Ma, Y.M. Huang, Instability of the characteristic emissions of dopant Tb in ZnO hexagonal pyramids. J. Electron. Mater. 46, 947–954 (2017)
42.
go back to reference Y. Zhang, G.K. Das, R. Xu, Tb-doped iron oxide: bifunctional fluorescent and magnetic nanocrystals. J. Mater. Chem. 19, 3696–3703 (2009) Y. Zhang, G.K. Das, R. Xu, Tb-doped iron oxide: bifunctional fluorescent and magnetic nanocrystals. J. Mater. Chem. 19, 3696–3703 (2009)
Metadata
Title
Ultra-low remanence and weak magnetic agglomeration of superparamagnetic magnetite nanoparticles caused by high magnetic moment Tb3+ doping
Authors
Pengyu Gong
Qingyun Chen
Kaimin Shih
Changzhong Liao
Lielin Wang
Hua Xie
Sihao Deng
Publication date
13-11-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 24/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02465-9

Other articles of this Issue 24/2019

Journal of Materials Science: Materials in Electronics 24/2019 Go to the issue