Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2016 | OriginalPaper | Chapter

Ultrasonic Friction Modulation While Pressing Induces a Tactile Feedback

Authors : Jocelyn Monnoyer, Emmanuelle Diaz, Christophe Bourdin, Michaël Wiertlewski

Published in: Haptics: Perception, Devices, Control, and Applications

Publisher: Springer International Publishing

share
SHARE

Abstract

Current touchscreen technology makes for intuitive human-computer interactions but often lacks haptic feedback offered by conventional input methods. Typing text on a virtual keyboard is arguably the task in which the absence of tactile cues imparts performance and comfort the most. Here we investigated the feasibility of modulating friction via ultrasonic vibration as a function of the pressing force to simulate a tactile feedback similar to a keystroke. Ultrasonic vibration is generally used to modulate the sliding friction which occurs when a finger moves laterally on a surface. We found that this method is also effective when the exploratory motion is normal to the surface. Psychophysical experiments show that a mechanical detent is unambiguously perceived in the case of signals starting with a high level of friction and ending to a low friction level. A weaker effect is experienced when friction is increasing with the pressure exerted by the finger, which suggests that the mechanism involved is a release of the skin stretch accumulated during the high-friction state.
Literature
1.
go back to reference Hoggan, E., Brewster, S.A., Johnston, J.: Investigating the effectiveness of tactile feedback for mobile touchscreens. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1573–1582. ACM (2008) Hoggan, E., Brewster, S.A., Johnston, J.: Investigating the effectiveness of tactile feedback for mobile touchscreens. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1573–1582. ACM (2008)
2.
go back to reference Ma, Z., Edge, D., Findlater, L., Tan, H.Z.: Haptic keyclick feedback improves typing speed and reduces typing errors on a flat keyboard. In: 2015 IEEE World Haptics Conference (WHC), pp. 220–227. IEEE (2015) Ma, Z., Edge, D., Findlater, L., Tan, H.Z.: Haptic keyclick feedback improves typing speed and reduces typing errors on a flat keyboard. In: 2015 IEEE World Haptics Conference (WHC), pp. 220–227. IEEE (2015)
3.
go back to reference Murmann, G., Bauer, G.: Low profile switch. US Patent 4,467,160, 21 August 1984 Murmann, G., Bauer, G.: Low profile switch. US Patent 4,467,160, 21 August 1984
4.
go back to reference Weir, D.W., Peshkin, M., Colgate, J.E., Buttolo, P., Rankin, J., Johnston, M.: The haptic profile: capturing the feel of switches. In: Proceedings of 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS 2004, pp. 186–193. IEEE (2004) Weir, D.W., Peshkin, M., Colgate, J.E., Buttolo, P., Rankin, J., Johnston, M.: The haptic profile: capturing the feel of switches. In: Proceedings of 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS 2004, pp. 186–193. IEEE (2004)
5.
go back to reference Harris, R.H.: Catastrophically buckling compression column switch and actuator. US Patent 3,699,296, 17 October 1972 Harris, R.H.: Catastrophically buckling compression column switch and actuator. US Patent 3,699,296, 17 October 1972
6.
go back to reference English, G.: Computer keyboard with flexible dome switch layer. US Patent 5,212,356, 18 May 1993 English, G.: Computer keyboard with flexible dome switch layer. US Patent 5,212,356, 18 May 1993
7.
go back to reference Chen, P.C.: Computer keyboard key switch. US Patent 5,457,297, 10 October 1995 Chen, P.C.: Computer keyboard key switch. US Patent 5,457,297, 10 October 1995
8.
go back to reference Poupyrev, I., Maruyama, S.: Tactile interfaces for small touch screens. In: Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology, pp. 217–220. ACM (2003) Poupyrev, I., Maruyama, S.: Tactile interfaces for small touch screens. In: Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology, pp. 217–220. ACM (2003)
9.
go back to reference Kaaresoja, T., Brown, L.M., Linjama, J.: Snap-crackle-pop: tactile feedback for mobile touch screens. In: Proceedings of Eurohaptics, vol. 2006, pp. 565–566. Citeseer (2006) Kaaresoja, T., Brown, L.M., Linjama, J.: Snap-crackle-pop: tactile feedback for mobile touch screens. In: Proceedings of Eurohaptics, vol. 2006, pp. 565–566. Citeseer (2006)
10.
go back to reference Zoller, I., Lotz, P., Kern, T.A.: Novel thin electromagnetic system for creating pushbutton feedback in automotive applications. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012, Part I. LNCS, vol. 7282, pp. 637–645. Springer, Heidelberg (2012) CrossRef Zoller, I., Lotz, P., Kern, T.A.: Novel thin electromagnetic system for creating pushbutton feedback in automotive applications. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012, Part I. LNCS, vol. 7282, pp. 637–645. Springer, Heidelberg (2012) CrossRef
11.
go back to reference Kim, J.R., Tan, H.Z.: Haptic feedback intensity affects touch typing performance on a flat keyboard. In: Auvray, M., Duriez, C. (eds.) EuroHaptics 2014, Part I. LNCS, vol. 8618, pp. 369–375. Springer, Heidelberg (2014) Kim, J.R., Tan, H.Z.: Haptic feedback intensity affects touch typing performance on a flat keyboard. In: Auvray, M., Duriez, C. (eds.) EuroHaptics 2014, Part I. LNCS, vol. 8618, pp. 369–375. Springer, Heidelberg (2014)
12.
go back to reference Visell, Y., Giordano, B.L., Millet, G., Cooperstock, J.R.: Vibration influences haptic perception of surface compliance during walking. PLoS ONE 6(3), e17697 (2011) CrossRef Visell, Y., Giordano, B.L., Millet, G., Cooperstock, J.R.: Vibration influences haptic perception of surface compliance during walking. PLoS ONE 6(3), e17697 (2011) CrossRef
13.
go back to reference Watanabe, T., Fukui, S.: A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: IEEE ICRA, pp. 1134–1139, May 1995 Watanabe, T., Fukui, S.: A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: IEEE ICRA, pp. 1134–1139, May 1995
14.
go back to reference Biet, M., Giraud, F., Lemaire-Semail, B.: Squeeze film effect for the design of an ultrasonic tactile plate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2678–2688 (2007) CrossRef Biet, M., Giraud, F., Lemaire-Semail, B.: Squeeze film effect for the design of an ultrasonic tactile plate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2678–2688 (2007) CrossRef
15.
go back to reference Winfield, L., Glassmire, J., Colgate, J.E., Peshkin, M.: T-pad: Tactile pattern display through variable friction reduction. In: World Haptics Conference, pp. 421–426. IEEE (2007) Winfield, L., Glassmire, J., Colgate, J.E., Peshkin, M.: T-pad: Tactile pattern display through variable friction reduction. In: World Haptics Conference, pp. 421–426. IEEE (2007)
16.
go back to reference Wiertlewski, M., Leonardis, D., Meyer, D.J., Peshkin, M.A., Colgate, J.E.: A high-fidelity surface-haptic device for texture rendering on bare finger. In: Auvray, M., Duriez, C. (eds.) EuroHaptics 2014, Part II. LNCS, vol. 8619, pp. 241–248. Springer, Heidelberg (2014) Wiertlewski, M., Leonardis, D., Meyer, D.J., Peshkin, M.A., Colgate, J.E.: A high-fidelity surface-haptic device for texture rendering on bare finger. In: Auvray, M., Duriez, C. (eds.) EuroHaptics 2014, Part II. LNCS, vol. 8619, pp. 241–248. Springer, Heidelberg (2014)
17.
go back to reference Johansson, R.S., Flanagan, J.R.: Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009) CrossRef Johansson, R.S., Flanagan, J.R.: Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009) CrossRef
18.
go back to reference Bicchi, A., Scilingo, E.P., De Rossi, D.: Haptic discrimination of softness in teleoperation: the role of the contact area spread rate. IEEE Trans. Robot. Autom. 16(5), 496–504 (2000) CrossRef Bicchi, A., Scilingo, E.P., De Rossi, D.: Haptic discrimination of softness in teleoperation: the role of the contact area spread rate. IEEE Trans. Robot. Autom. 16(5), 496–504 (2000) CrossRef
19.
go back to reference Di Luca, M., Knörlein, B., Ernst, M.O., Harders, M.: Effects of visual-haptic asynchronies and loading-unloading movements on compliance perception. Brain Res. Bull. 85(5), 245–259 (2011) CrossRef Di Luca, M., Knörlein, B., Ernst, M.O., Harders, M.: Effects of visual-haptic asynchronies and loading-unloading movements on compliance perception. Brain Res. Bull. 85(5), 245–259 (2011) CrossRef
20.
go back to reference Maeno, T., Kawamura, T., Cheng, S.C.: Friction estimation by pressing an elastic finger-shaped sensor against a surface. IEEE Trans. Robot. Autom. 20(2), 222–228 (2004) CrossRef Maeno, T., Kawamura, T., Cheng, S.C.: Friction estimation by pressing an elastic finger-shaped sensor against a surface. IEEE Trans. Robot. Autom. 20(2), 222–228 (2004) CrossRef
Metadata
Title
Ultrasonic Friction Modulation While Pressing Induces a Tactile Feedback
Authors
Jocelyn Monnoyer
Emmanuelle Diaz
Christophe Bourdin
Michaël Wiertlewski
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-42321-0_16