Skip to main content
Top

16-09-2024

Unbiasing Hamiltonian Monte Carlo Algorithms for a General Hamiltonian Function

Authors: T. Lelièvre, R. Santet, G. Stoltz

Published in: Foundations of Computational Mathematics

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo method that allows to sample high dimensional probability measures. It relies on the integration of the Hamiltonian dynamics to propose a move which is then accepted or rejected thanks to a Metropolis procedure. Unbiased sampling is guaranteed by the preservation by the numerical integrators of two key properties of the Hamiltonian dynamics: volume-preservation and reversibility up to momentum reversal. For separable Hamiltonian functions, some standard explicit numerical schemes, such as the Störmer–Verlet integrator, satisfy these properties. However, for numerical or physical reasons, one may consider a Hamiltonian function which is nonseparable, in which case the standard numerical schemes which preserve the volume and satisfy reversibility up to momentum reversal are implicit. When implemented in practice, such implicit schemes may admit many solutions or none, especially when the timestep is too large. We show here how to enforce the numerical reversibility, and thus unbiasedness, of HMC schemes in this context by introducing a reversibility check. In addition, for some specific forms of the Hamiltonian function, we discuss the consistency of these HMC schemes with some Langevin dynamics, and show in particular that our algorithm yields an efficient discretization of the metropolized overdamped Langevin dynamics with position-dependent diffusion coefficients. Numerical results illustrate the relevance of the reversibility check on simple problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Abdulle, G. A. Pavliotis, and G. Vilmart. Accelerated convergence to equilibrium and reduced asymptotic variance for Langevin dynamics using Stratonovich perturbations. C. R. Math. Acad. Sci. Paris, 357(4):349–354, 2019.MathSciNetCrossRef A. Abdulle, G. A. Pavliotis, and G. Vilmart. Accelerated convergence to equilibrium and reduced asymptotic variance for Langevin dynamics using Stratonovich perturbations. C. R. Math. Acad. Sci. Paris, 357(4):349–354, 2019.MathSciNetCrossRef
2.
go back to reference H. C. Andersen. Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics, 52(1):24–34, 1983.MathSciNetCrossRef H. C. Andersen. Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics, 52(1):24–34, 1983.MathSciNetCrossRef
3.
go back to reference R. Balian. From Microphysics to Macrophysics: Methods and Applications of Statistical Physics. Vol. II. Springer, Berlin, 2007. R. Balian. From Microphysics to Macrophysics: Methods and Applications of Statistical Physics. Vol. II. Springer, Berlin, 2007.
4.
go back to reference N. Bou-Rabee and E. Vanden-Eijnden. Pathwise accuracy and ergodicity of metropolized integrators for SDEs. Communications on Pure and Applied Mathematics, 63(5):655–696, 2010.MathSciNetCrossRef N. Bou-Rabee and E. Vanden-Eijnden. Pathwise accuracy and ergodicity of metropolized integrators for SDEs. Communications on Pure and Applied Mathematics, 63(5):655–696, 2010.MathSciNetCrossRef
5.
go back to reference J. A. Brofos and R. R. Lederman. Evaluating the Implicit Midpoint Integrator for Riemannian Manifold Hamiltonian Monte Carlo. Proc Mach Learn Res, 139:1072–1081, July 2021. J. A. Brofos and R. R. Lederman. Evaluating the Implicit Midpoint Integrator for Riemannian Manifold Hamiltonian Monte Carlo. Proc Mach Learn Res, 139:1072–1081, July 2021.
6.
go back to reference J. A. Brofos and R. R. Lederman. On numerical considerations for Riemannian Manifold Hamiltonian Monte Carlo. arXiv preprint arXiv:2111.09995, (2022). J. A. Brofos and R. R. Lederman. On numerical considerations for Riemannian Manifold Hamiltonian Monte Carlo. arXiv preprint arXiv:​2111.​09995, (2022).
7.
go back to reference E. Cancès, F. Legoll, and G. Stoltz. Theoretical and numerical comparison of some sampling methods for molecular dynamics. M2AN Math. Model. Numer. Anal., 41(2):351–389, 2007. E. Cancès, F. Legoll, and G. Stoltz. Theoretical and numerical comparison of some sampling methods for molecular dynamics. M2AN Math. Model. Numer. Anal., 41(2):351–389, 2007.
8.
go back to reference J. Comer, C. Chipot, and F. D. González-Nilo. Calculating position-dependent diffusivity in biased molecular dynamics simulations. Journal of Chemical Theory and Computation, 9(2):876–882, 2013.CrossRef J. Comer, C. Chipot, and F. D. González-Nilo. Calculating position-dependent diffusivity in biased molecular dynamics simulations. Journal of Chemical Theory and Computation, 9(2):876–882, 2013.CrossRef
9.
go back to reference B. Leimkuhler D. Phillips and C. Matthews. Numerics with coordinate transforms for efficient Brownian dynamics simulations. Molecular Physics, 2024. B. Leimkuhler D. Phillips and C. Matthews. Numerics with coordinate transforms for efficient Brownian dynamics simulations. Molecular Physics, 2024.
10.
go back to reference R. Douc, E. Moulines, P. Priouret, and P. Soulier. Markov Chains. Springer Series in Operations Research and Financial Engineering. Springer, Cham, 2018.CrossRef R. Douc, E. Moulines, P. Priouret, and P. Soulier. Markov Chains. Springer Series in Operations Research and Financial Engineering. Springer, Cham, 2018.CrossRef
11.
go back to reference S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics Letters B, 195(2):216–222, 1987.MathSciNetCrossRef S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics Letters B, 195(2):216–222, 1987.MathSciNetCrossRef
12.
go back to reference A. B. Duncan, T. Lelièvre, and G. A. Pavliotis. Variance reduction using nonreversible langevin samplers. Journal of Statistical Physics, 163(3):457–491, 2016.MathSciNetCrossRef A. B. Duncan, T. Lelièvre, and G. A. Pavliotis. Variance reduction using nonreversible langevin samplers. Journal of Statistical Physics, 163(3):457–491, 2016.MathSciNetCrossRef
13.
go back to reference A. Durmus, E. Moulines, and E Saksman. Irreducibility and geometric ergodicity of Hamiltonian Monte Carlo. Ann. Statist., 48(6):3545–3564, 2020.MathSciNetCrossRef A. Durmus, E. Moulines, and E Saksman. Irreducibility and geometric ergodicity of Hamiltonian Monte Carlo. Ann. Statist., 48(6):3545–3564, 2020.MathSciNetCrossRef
14.
go back to reference D. J. Evans and G. Morriss. Statistical Mechanics of Nonequilibrium Liquids. Cambridge University Press, 2 edition, 2008. D. J. Evans and G. Morriss. Statistical Mechanics of Nonequilibrium Liquids. Cambridge University Press, 2 edition, 2008.
15.
go back to reference Y. Fang, J. M. Sanz-Serna, and R. D. Skeel. Compressible Generalized Hybrid Monte Carlo. The Journal of Chemical Physics, 140(17):174108, 2014.CrossRef Y. Fang, J. M. Sanz-Serna, and R. D. Skeel. Compressible Generalized Hybrid Monte Carlo. The Journal of Chemical Physics, 140(17):174108, 2014.CrossRef
16.
go back to reference M. Fathi and G. Stoltz. Improving dynamical properties of metropolized discretizations of overdamped Langevin dynamics. Numerische Mathematik, 136(2):545–602, 2017.MathSciNetCrossRef M. Fathi and G. Stoltz. Improving dynamical properties of metropolized discretizations of overdamped Langevin dynamics. Numerische Mathematik, 136(2):545–602, 2017.MathSciNetCrossRef
17.
go back to reference D. Frenkel and B. Smit. Understanding Molecular Simulation. Academic Press, Inc., USA, 2nd edition, 2001. D. Frenkel and B. Smit. Understanding Molecular Simulation. Academic Press, Inc., USA, 2nd edition, 2001.
18.
go back to reference A. Garbuno-Inigo, N. Nüsken, and S. Reich. Affine invariant interacting Langevin dynamics for Bayesian inference. SIAM Journal on Applied Dynamical Systems, 19(3):1633–1658, 2020.MathSciNetCrossRef A. Garbuno-Inigo, N. Nüsken, and S. Reich. Affine invariant interacting Langevin dynamics for Bayesian inference. SIAM Journal on Applied Dynamical Systems, 19(3):1633–1658, 2020.MathSciNetCrossRef
19.
go back to reference M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123–214, 2011.MathSciNetCrossRef M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123–214, 2011.MathSciNetCrossRef
20.
go back to reference M. M. Graham, A. H. Thiery, and A. Beskos. Manifold Markov chain Monte Carlo methods for Bayesian inference in diffusion models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(4):1229–1256, 2022.MathSciNetCrossRef M. M. Graham, A. H. Thiery, and A. Beskos. Manifold Markov chain Monte Carlo methods for Bayesian inference in diffusion models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(4):1229–1256, 2022.MathSciNetCrossRef
21.
go back to reference E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration, volume 31 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006. E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration, volume 31 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006.
22.
go back to reference W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109, 1970.MathSciNetCrossRef W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109, 1970.MathSciNetCrossRef
23.
24.
go back to reference J. A. Izaguirre and S. S. Hampton. Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules. Journal of Computational Physics, 200(2):581–604, 2004.CrossRef J. A. Izaguirre and S. S. Hampton. Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules. Journal of Computational Physics, 200(2):581–604, 2004.CrossRef
25.
go back to reference M. Jardat, O. Bernard, P. Turq, and G. R. Kneller. Transport coefficients of electrolyte solutions from Smart Brownian dynamics simulations. The Journal of Chemical Physics, 110(16):7993–7999, 1999.CrossRef M. Jardat, O. Bernard, P. Turq, and G. R. Kneller. Transport coefficients of electrolyte solutions from Smart Brownian dynamics simulations. The Journal of Chemical Physics, 110(16):7993–7999, 1999.CrossRef
26.
go back to reference T. S. Kleppe. Modified Cholesky Riemann Manifold Hamiltonian Monte Carlo: exploiting sparsity for fast sampling of high-dimensional targets. Statistics and Computing, 28(4):795–817, 2018.MathSciNetCrossRef T. S. Kleppe. Modified Cholesky Riemann Manifold Hamiltonian Monte Carlo: exploiting sparsity for fast sampling of high-dimensional targets. Statistics and Computing, 28(4):795–817, 2018.MathSciNetCrossRef
27.
go back to reference Y. Kook, Y. Lee, R. Shen, and S. Vempala. Sampling with Riemannian Hamiltonian Monte Carlo in a constrained space. In Alice H. O., Alekh A., Danielle B., and Kyunghyun C., editors, Advances in Neural Information Processing Systems, 2022. Y. Kook, Y. Lee, R. Shen, and S. Vempala. Sampling with Riemannian Hamiltonian Monte Carlo in a constrained space. In Alice H. O., Alekh A., Danielle B., and Kyunghyun C., editors, Advances in Neural Information Processing Systems, 2022.
28.
go back to reference Y. Kook, Y. T. Lee, R. Shen, and S. Vempala. Condition-number-independent convergence rate of Riemannian Hamiltonian Monte Carlo with numerical integrators. In G. Neu and L. Rosasco, editors, Proceedings of Thirty Sixth Conference on Learning Theory, volume 195 of Proceedings of Machine Learning Research, pp. 4504–4569. PMLR, 12–15 Jul 2023. Y. Kook, Y. T. Lee, R. Shen, and S. Vempala. Condition-number-independent convergence rate of Riemannian Hamiltonian Monte Carlo with numerical integrators. In G. Neu and L. Rosasco, editors, Proceedings of Thirty Sixth Conference on Learning Theory, volume 195 of Proceedings of Machine Learning Research, pp. 4504–4569. PMLR, 12–15 Jul 2023.
30.
go back to reference F. Legoll and T. Lelièvre. Effective dynamics using conditional expectations. Nonlinearity, 23(9):2131, 2010.MathSciNetCrossRef F. Legoll and T. Lelièvre. Effective dynamics using conditional expectations. Nonlinearity, 23(9):2131, 2010.MathSciNetCrossRef
31.
go back to reference B. Leimkuhler, C. Matthews, and G. Stoltz. The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal., 36(1):13–79, 2016.MathSciNet B. Leimkuhler, C. Matthews, and G. Stoltz. The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal., 36(1):13–79, 2016.MathSciNet
32.
go back to reference B. Leimkuhler, C. Matthews, and J. Weare. Ensemble preconditioning for Markov chain Monte Carlo simulation. Statistics and Computing, 28(2):277–290, 2018. B. Leimkuhler, C. Matthews, and J. Weare. Ensemble preconditioning for Markov chain Monte Carlo simulation. Statistics and Computing, 28(2):277–290, 2018.
33.
go back to reference B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2005.CrossRef B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2005.CrossRef
34.
go back to reference T. Lelièvre, M. Rousset, and G. Stoltz. Free Energy Computations: A Mathematical Perspective. Imperial College Press, 2010. T. Lelièvre, M. Rousset, and G. Stoltz. Free Energy Computations: A Mathematical Perspective. Imperial College Press, 2010.
35.
go back to reference T. Lelièvre, M. Rousset, and G. Stoltz. Hybrid Monte Carlo methods for sampling probability measures on submanifolds. Numerische Mathematik, 143(2):379–421, 2019.MathSciNetCrossRef T. Lelièvre, M. Rousset, and G. Stoltz. Hybrid Monte Carlo methods for sampling probability measures on submanifolds. Numerische Mathematik, 143(2):379–421, 2019.MathSciNetCrossRef
36.
go back to reference T. Lelièvre and G. Stoltz. Partial differential equations and stochastic methods in molecular dynamics. Acta Numer., 25:681–880, 2016.MathSciNetCrossRef T. Lelièvre and G. Stoltz. Partial differential equations and stochastic methods in molecular dynamics. Acta Numer., 25:681–880, 2016.MathSciNetCrossRef
37.
go back to reference T. Lelièvre, G. A. Pavliotis, G. Robin, R. Santet, and G. Stoltz. Optimizing the diffusion coefficient of overdamped Langevin dynamics. arXiv preprint[SPACE]arXiv:2404.12087 (2024). T. Lelièvre, G. A. Pavliotis, G. Robin, R. Santet, and G. Stoltz. Optimizing the diffusion coefficient of overdamped Langevin dynamics. arXiv preprint[SPACE]arXiv:​2404.​12087 (2024).
38.
go back to reference T. Lelièvre, G. Stoltz, and W. Zhang. Multiple projection Markov chain Monte Carlo algorithms on submanifolds. IMA Journal of Numerical Analysis, 43:737–788, 2022. T. Lelièvre, G. Stoltz, and W. Zhang. Multiple projection Markov chain Monte Carlo algorithms on submanifolds. IMA Journal of Numerical Analysis, 43:737–788, 2022.
39.
go back to reference Z. Liu, A.M. Stuart, and Y. Wang. Second order ensemble Langevin method for sampling and inverse problems. arXiv preprint,[SPACE]arXiv:2208.04506, (2022). Z. Liu, A.M. Stuart, and Y. Wang. Second order ensemble Langevin method for sampling and inverse problems. arXiv preprint,[SPACE]arXiv:​2208.​04506, (2022).
40.
go back to reference S. Livingstone, M. Betancourt, S. Byrne, and M. Girolami. On the geometric ergodicity of Hamiltonian Monte Carlo. Bernoulli, 25(4A):3109 – 3138, 2019.MathSciNetCrossRef S. Livingstone, M. Betancourt, S. Byrne, and M. Girolami. On the geometric ergodicity of Hamiltonian Monte Carlo. Bernoulli, 25(4A):3109 – 3138, 2019.MathSciNetCrossRef
41.
go back to reference N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.CrossRef N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.CrossRef
42.
go back to reference S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cambridge University Press, Cambridge, second edition, 2009.CrossRef S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cambridge University Press, Cambridge, second edition, 2009.CrossRef
43.
go back to reference G. N. Milstein and M. V. Tretyakov. Stochastic Numerics for Mathematical Physics. Scientific Computation. Springer-Verlag, Berlin, 2004.CrossRef G. N. Milstein and M. V. Tretyakov. Stochastic Numerics for Mathematical Physics. Scientific Computation. Springer-Verlag, Berlin, 2004.CrossRef
44.
go back to reference P. Monmarché. An entropic approach for Hamiltonian Monte Carlo: The idealized case. The Annals of Applied Probability, 34(2):2243 – 2293, 2024.MathSciNetCrossRef P. Monmarché. An entropic approach for Hamiltonian Monte Carlo: The idealized case. The Annals of Applied Probability, 34(2):2243 – 2293, 2024.MathSciNetCrossRef
45.
go back to reference J. R. Munkres. Topology. Prentice Hall, Inc., Upper Saddle River, NJ, 2nd edition, 2000. J. R. Munkres. Topology. Prentice Hall, Inc., Upper Saddle River, NJ, 2nd edition, 2000.
46.
go back to reference R. M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods. Technical Report CRG-TR-93-1. Department of Computer Science, University of Toronto, 1993. R. M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods. Technical Report CRG-TR-93-1. Department of Computer Science, University of Toronto, 1993.
47.
go back to reference M. Noble, V. De Bortoli, and A. Durmus. Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. M. Noble, V. De Bortoli, and A. Durmus. Unbiased constrained sampling with Self-Concordant Barrier Hamiltonian Monte Carlo. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
48.
go back to reference R. Poncet. Generalized and hybrid Metropolis–Hastings overdamped Langevin algorithms. arXiv preprint,[SPACE]arXiv:1701.05833 (2017). R. Poncet. Generalized and hybrid Metropolis–Hastings overdamped Langevin algorithms. arXiv preprint,[SPACE]arXiv:​1701.​05833 (2017).
49.
go back to reference L. Rey-Bellet and K. Spiliopoulos. Irreversible Langevin samplers and variance reduction: a large deviations approach. Nonlinearity, 28(7):2081, 2015.MathSciNetCrossRef L. Rey-Bellet and K. Spiliopoulos. Irreversible Langevin samplers and variance reduction: a large deviations approach. Nonlinearity, 28(7):2081, 2015.MathSciNetCrossRef
50.
go back to reference L. Rey-Bellet and K. Spiliopoulos. Variance reduction for irreversible Langevin samplers and diffusion on graphs. Electronic Communications in Probability, 20:1–16, 2015.MathSciNetCrossRef L. Rey-Bellet and K. Spiliopoulos. Variance reduction for irreversible Langevin samplers and diffusion on graphs. Electronic Communications in Probability, 20:1–16, 2015.MathSciNetCrossRef
51.
go back to reference L. Rey-Bellet and K. Spiliopoulos. Improving the convergence of reversible samplers. J. Stat. Phys., 164(3):472–494, 2016.MathSciNetCrossRef L. Rey-Bellet and K. Spiliopoulos. Improving the convergence of reversible samplers. J. Stat. Phys., 164(3):472–494, 2016.MathSciNetCrossRef
52.
go back to reference C. P. Robert. The Bayesian Choice. Springer Texts in Statistics. Springer, New York, second edition, 2007. C. P. Robert. The Bayesian Choice. Springer Texts in Statistics. Springer, New York, second edition, 2007.
53.
go back to reference C. P. Robert and G. Casella. Markov chains. In Christian P. Robert and George Casella, editors, Monte Carlo Statistical Methods, Springer Texts in Statistics, pp. 205–265. Springer, New York, 2004.CrossRef C. P. Robert and G. Casella. Markov chains. In Christian P. Robert and George Casella, editors, Monte Carlo Statistical Methods, Springer Texts in Statistics, pp. 205–265. Springer, New York, 2004.CrossRef
54.
go back to reference G. O. Roberts and J. S. Rosenthal. Optimal scaling of discrete approximations to Langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(1):255–268, 1998.MathSciNetCrossRef G. O. Roberts and J. S. Rosenthal. Optimal scaling of discrete approximations to Langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(1):255–268, 1998.MathSciNetCrossRef
55.
go back to reference G. O. Roberts and O. Stramer. Langevin diffusions and Metropolis-Hastings algorithms. Methodol. Comput. Appl. Probab., 4:337–357 (2003), 2002.MathSciNet G. O. Roberts and O. Stramer. Langevin diffusions and Metropolis-Hastings algorithms. Methodol. Comput. Appl. Probab., 4:337–357 (2003), 2002.MathSciNet
56.
go back to reference P. J. Rossky, J. D. Doll, and H. L. Friedman. Brownian dynamics as smart Monte Carlo simulation. The Journal of Chemical Physics, 69(10):4628–4633, 1978.CrossRef P. J. Rossky, J. D. Doll, and H. L. Friedman. Brownian dynamics as smart Monte Carlo simulation. The Journal of Chemical Physics, 69(10):4628–4633, 1978.CrossRef
57.
go back to reference J-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3):327–341, 1977.CrossRef J-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3):327–341, 1977.CrossRef
58.
go back to reference P. G. Saffman and M. Delbrück. Brownian motion in biological membranes. Proceedings of the National Academy of Sciences, 72(8):3111–3113, 1975.CrossRef P. G. Saffman and M. Delbrück. Brownian motion in biological membranes. Proceedings of the National Academy of Sciences, 72(8):3111–3113, 1975.CrossRef
59.
go back to reference C. Schütte. Habilitation Thesis. Freie Universität Berlin, 1999. C. Schütte. Habilitation Thesis. Freie Universität Berlin, 1999.
60.
go back to reference G. Stoltz and Z. Trstanova. Langevin dynamics with general kinetic energies. Multiscale Model. Simul., 16(2):777–806, 2018.MathSciNetCrossRef G. Stoltz and Z. Trstanova. Langevin dynamics with general kinetic energies. Multiscale Model. Simul., 16(2):777–806, 2018.MathSciNetCrossRef
61.
go back to reference D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl., 8(4):483–509 (1991), 1990. D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl., 8(4):483–509 (1991), 1990.
62.
go back to reference M. E. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press, Oxford, 2010. M. E. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press, Oxford, 2010.
63.
go back to reference E. Zappa, M. Holmes-Cerfon, and J. Goodman. Monte Carlo on manifolds: sampling densities and integrating functions. Communications on Pure and Applied Mathematics, 71(12):2609–2647, 2018.MathSciNetCrossRef E. Zappa, M. Holmes-Cerfon, and J. Goodman. Monte Carlo on manifolds: sampling densities and integrating functions. Communications on Pure and Applied Mathematics, 71(12):2609–2647, 2018.MathSciNetCrossRef
64.
go back to reference E. Zeidler. Applied Functional Analysis, volume 108 of Applied Mathematical Sciences. Springer-Verlag, New York, 1995. E. Zeidler. Applied Functional Analysis, volume 108 of Applied Mathematical Sciences. Springer-Verlag, New York, 1995.
65.
go back to reference B. J. Zhang, Y. M. Marzouk, and K. Spiliopoulos. Geometry-informed irreversible perturbations for accelerated convergence of Langevin dynamics. Statistics and Computing, 32(5):78, September 2022. B. J. Zhang, Y. M. Marzouk, and K. Spiliopoulos. Geometry-informed irreversible perturbations for accelerated convergence of Langevin dynamics. Statistics and Computing, 32(5):78, September 2022.
Metadata
Title
Unbiasing Hamiltonian Monte Carlo Algorithms for a General Hamiltonian Function
Authors
T. Lelièvre
R. Santet
G. Stoltz
Publication date
16-09-2024
Publisher
Springer US
Published in
Foundations of Computational Mathematics
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-024-09677-4

Premium Partner