Skip to main content
Top

2019 | OriginalPaper | Chapter

Uncertainty-Based Design Optimization of NLF Airfoil Based on Polynomial Chaos Expansion

Authors : Huan Zhao, Zhenghong Gao

Published in: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The high probability of the occurrence of separation bubbles or shocks and early transition to turbulence on surfaces of airfoil makes it very difficult to design high lift and high-speed Natural-Laminar-Flow (NLF) airfoil for high altitude long endurance unmanned air vehicles. To resolve this issue, a framework of uncertainty-based design optimization (UBDO) is developed based on the polynomial chaos expansion method. The \( \gamma { - }\overline{\text{Re}}_{\theta t} \) transition model combined with the shear stress transport \( k - \omega \) turbulence model is used to predict the laminar-turbulent transition. The particle swarm optimization algorithm and surrogate model are integrated to search for the optimal NLF airfoil. Using proposed UBDO framework, the aforementioned problem has been regularized to achieve the optimal airfoil with a tradeoff of aerodynamic performances under fully-turbulent and free transition conditions. The tradeoff is to make sure its good performance when early transition to turbulence on surfaces of NLF airfoil happens. The results indicate UBDO of NLF airfoil considering Mach number and lift coefficient uncertainty under free transition condition shows a significant deterioration when complicated flight conditions lead to early transition to turbulence. Meanwhile, UBDO of NLF airfoil with a tradeoff of performances under fully-turbulent and free transition conditions holds robust and reliable aerodynamic performance under complicated flight conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hicks RM, Cliff SE (1991) An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers. NASA TM-102840 Hicks RM, Cliff SE (1991) An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers. NASA TM-102840
2.
go back to reference Zhao H, Gao Z, Wang C, Yuan G (2017) Robust design of high speed natural-laminar-flow airfoil for high lift. In: 55th AIAA Aerospace Sciences Meeting, p 1414 Zhao H, Gao Z, Wang C, Yuan G (2017) Robust design of high speed natural-laminar-flow airfoil for high lift. In: 55th AIAA Aerospace Sciences Meeting, p 1414
3.
go back to reference Driver J, Zingg D (2006) Optimized natural-laminar-flow airfoils. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, p 247 Driver J, Zingg D (2006) Optimized natural-laminar-flow airfoils. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, p 247
4.
go back to reference Rashad R, Zingg DW (2013) Toward high-fidelity aerodynamic shape optimization for natural laminar flow. In: 21st AIAA Computational Fluid Dynamics Conference, p 2583 Rashad R, Zingg DW (2013) Toward high-fidelity aerodynamic shape optimization for natural laminar flow. In: 21st AIAA Computational Fluid Dynamics Conference, p 2583
5.
go back to reference Cameron L, Early J, McRoberts R (2011) Metamodel assisted multi-objective global optimisation of natural laminar flow aerofoils. In: 29th AIAA Applied Aerodynamics Conference, p 3001 Cameron L, Early J, McRoberts R (2011) Metamodel assisted multi-objective global optimisation of natural laminar flow aerofoils. In: 29th AIAA Applied Aerodynamics Conference, p 3001
6.
go back to reference Khayatzadeh P, Nadarajah S (2012) Aerodynamic shape optimization of natural laminar flow (NLF) airfoils. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p 61 Khayatzadeh P, Nadarajah S (2012) Aerodynamic shape optimization of natural laminar flow (NLF) airfoils. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p 61
7.
go back to reference Fujino M, Yoshizaki Y, Kawamura Y (2003) Natural-laminar-flow airfoil development for a lightweight business jet. J Aircr 40(4):609–615CrossRef Fujino M, Yoshizaki Y, Kawamura Y (2003) Natural-laminar-flow airfoil development for a lightweight business jet. J Aircr 40(4):609–615CrossRef
8.
go back to reference Nemec M, Zingg DW, Pulliam TH (2004) Multipoint and multi-objective aerodynamic shape optimization. AIAA J 42(6):1057–1065CrossRef Nemec M, Zingg DW, Pulliam TH (2004) Multipoint and multi-objective aerodynamic shape optimization. AIAA J 42(6):1057–1065CrossRef
9.
go back to reference Papadimitriou DI, Papadimitriou C (2016) Aerodynamic shape optimization for minimum robust drag and lift reliability constraint. Aerosp Sci Technol 55:24–33CrossRef Papadimitriou DI, Papadimitriou C (2016) Aerodynamic shape optimization for minimum robust drag and lift reliability constraint. Aerosp Sci Technol 55:24–33CrossRef
10.
go back to reference Park G-J, Lee T-H, Lee KH, Hwang K-H (2006) Robust design: an overview. AIAA J 44(1):181–191CrossRef Park G-J, Lee T-H, Lee KH, Hwang K-H (2006) Robust design: an overview. AIAA J 44(1):181–191CrossRef
11.
go back to reference Zhao H, Gao Z, Gao Y, Wang C (2017) Effective robust design of high lift NLF airfoil under multi-parameter uncertainty. Aerosp Sci Technol 68:530–542CrossRef Zhao H, Gao Z, Gao Y, Wang C (2017) Effective robust design of high lift NLF airfoil under multi-parameter uncertainty. Aerosp Sci Technol 68:530–542CrossRef
13.
go back to reference Keane AJ (2012) Cokriging for robust design optimization. AIAA J 50(11):2351–2364CrossRef Keane AJ (2012) Cokriging for robust design optimization. AIAA J 50(11):2351–2364CrossRef
14.
go back to reference Padulo M, Campobasso MS, Guenov MD (2011) Novel uncertainty propagation method for robust aerodynamic design. AIAA J 49(3):530–543CrossRef Padulo M, Campobasso MS, Guenov MD (2011) Novel uncertainty propagation method for robust aerodynamic design. AIAA J 49(3):530–543CrossRef
15.
go back to reference Padulo M, Maginot J, Guenov M, Holden C (2009) Airfoil design under uncertainty with robust geometric parameterization. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 17th AIAA/ASME/AHS Adaptive Structures Conference 11th AIAA No, p 2270 Padulo M, Maginot J, Guenov M, Holden C (2009) Airfoil design under uncertainty with robust geometric parameterization. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 17th AIAA/ASME/AHS Adaptive Structures Conference 11th AIAA No, p 2270
16.
go back to reference Kim NH, Wang H, Queipo NV (2006) Efficient shape optimization under uncertainty using polynomial chaos expansions and local sensitivities. AIAA J 44(5):1112–1116CrossRef Kim NH, Wang H, Queipo NV (2006) Efficient shape optimization under uncertainty using polynomial chaos expansions and local sensitivities. AIAA J 44(5):1112–1116CrossRef
17.
go back to reference Eldred M (2009) Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Structures, Structural Dynamics, and Materials and Co-located Conferences. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2009-2274 Eldred M (2009) Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Structures, Structural Dynamics, and Materials and Co-located Conferences. American Institute of Aeronautics and Astronautics. https://​doi.​org/​10.​2514/​6.​2009-2274
18.
go back to reference Li W, Huyse L, Padula S (2002) Robust airfoil optimization to achieve drag reduction over a range of mach numbers. Struct Multidisciplinary Optim 24(1):38–50CrossRef Li W, Huyse L, Padula S (2002) Robust airfoil optimization to achieve drag reduction over a range of mach numbers. Struct Multidisciplinary Optim 24(1):38–50CrossRef
19.
go back to reference Croicu A-M, Hussaini MY, Jameson A, Klopfer G (2012) Robust airfoil optimization using maximum expected value and expected maximum value approaches. AIAA J 50(9):1905–1919CrossRef Croicu A-M, Hussaini MY, Jameson A, Klopfer G (2012) Robust airfoil optimization using maximum expected value and expected maximum value approaches. AIAA J 50(9):1905–1919CrossRef
20.
go back to reference Duvigneau R (2007) Robust design of a transonic wing with uncertain mach number. In: EUROGEN 2007, Evolutionary Methods for Design. Optimization and Control, Jyvaskyla, Finland Duvigneau R (2007) Robust design of a transonic wing with uncertain mach number. In: EUROGEN 2007, Evolutionary Methods for Design. Optimization and Control, Jyvaskyla, Finland
21.
go back to reference Li J, Gao Z, Huang J, Zhao K (2013) Robust design of NLF airfoils. Chin J Aeronaut 26(2):309–318CrossRef Li J, Gao Z, Huang J, Zhao K (2013) Robust design of NLF airfoils. Chin J Aeronaut 26(2):309–318CrossRef
22.
go back to reference Zhao K, Z-h G, J-t H (2014) Robust design of natural laminar flow supercritical airfoil by multi-objective evolution method. Appl Math Mech 35(2):191–202MathSciNetCrossRef Zhao K, Z-h G, J-t H (2014) Robust design of natural laminar flow supercritical airfoil by multi-objective evolution method. Appl Math Mech 35(2):191–202MathSciNetCrossRef
23.
go back to reference Langtry RB, Menter FR (2009) Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J 47(12):2894–2906CrossRef Langtry RB, Menter FR (2009) Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J 47(12):2894–2906CrossRef
24.
go back to reference Zhao H, Gao Z, Wang C, Gao Y (2018) Research on the computing grid of high speed laminar airfoil. Chin J Appl Mech 35(2):351–357 Zhao H, Gao Z, Wang C, Gao Y (2018) Research on the computing grid of high speed laminar airfoil. Chin J Appl Mech 35(2):351–357
25.
go back to reference Somers DM (1981) Design and experimental results for a flapped natural-laminar-flow airfoil for general aviation applications Somers DM (1981) Design and experimental results for a flapped natural-laminar-flow airfoil for general aviation applications
26.
go back to reference Maughmer MD, Swan TS, Willits SM (2002) Design and testing of a winglet airfoil for low-speed aircraft. J Aircr 39(4):654–661CrossRef Maughmer MD, Swan TS, Willits SM (2002) Design and testing of a winglet airfoil for low-speed aircraft. J Aircr 39(4):654–661CrossRef
28.
go back to reference Xiu D, Karniadakis GE (2003) Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys 187(1):137–167MathSciNetCrossRef Xiu D, Karniadakis GE (2003) Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys 187(1):137–167MathSciNetCrossRef
29.
go back to reference Zhao K, Gao ZH, Huang JT, Jing L (2013) Airfoil flow uncertainty quantification and robust optimization based on polynomial chaos technique. Acta Mech Sin 46(1):10–19 Zhao K, Gao ZH, Huang JT, Jing L (2013) Airfoil flow uncertainty quantification and robust optimization based on polynomial chaos technique. Acta Mech Sin 46(1):10–19
30.
go back to reference Shimoyama K, Inoue A (2016) Uncertainty quantification by the nonintrusive polynomial chaos expansion with an adjustment strategy. AIAA J 54(10):3107–3116CrossRef Shimoyama K, Inoue A (2016) Uncertainty quantification by the nonintrusive polynomial chaos expansion with an adjustment strategy. AIAA J 54(10):3107–3116CrossRef
31.
go back to reference Hosder S, Walters R, Balch M (2007) Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p 1939 Hosder S, Walters R, Balch M (2007) Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p 1939
32.
33.
go back to reference Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE International Conference on Neural Networks, Proceedings, vol 1944, pp 1942–1948 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE International Conference on Neural Networks, Proceedings, vol 1944, pp 1942–1948
34.
go back to reference Zhao H, Gao Z, Gao Y (2017) Design optimization of natural-laminar-flow airfoil for complicated flight conditions. 35th AIAA Applied Aerodynamics Conference. AIAA AVIATION Forum. American Institute of Aeronautics and Astronautics, p 3060 Zhao H, Gao Z, Gao Y (2017) Design optimization of natural-laminar-flow airfoil for complicated flight conditions. 35th AIAA Applied Aerodynamics Conference. AIAA AVIATION Forum. American Institute of Aeronautics and Astronautics, p 3060
Metadata
Title
Uncertainty-Based Design Optimization of NLF Airfoil Based on Polynomial Chaos Expansion
Authors
Huan Zhao
Zhenghong Gao
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3305-7_126

Premium Partner