Skip to main content
Top

2021 | OriginalPaper | Chapter

Uncertainty Quantification of Pareto Fronts

Authors : Mohamed Bassi, Emmanuel Pagnacco, Roberta Lima, Eduardo Souza de Cursi

Published in: Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Uncertainty quantification of Pareto fronts introduces new challenges connected to probabilities in infinite dimensional spaces. Indeed, Pareto fronts are, in general, manifolds belonging to infinite dimensional spaces: for instance, a curve in bi-objective optimization or a surface in three objective optimization. This article examines the methods for the determination of means, standard deviations and confidence intervals of Pareto fronts. We show that a punctual mean is not adapted and that the use of chaos expansions may lead to difficulties. Then we propose an approach based on a variational characterization of the mean and we show that it is effective to generate statistics of Pareto fronts. Finally, we examine the use of expansions to generate large samples and evaluate probabilities connected to Pareto fronts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Literature
1.
go back to reference Bassi, M.: Quantification d’incertitudes et objets en dimension infinie. Ph.D. thesis, Normandie University, INSA Rouen Normandie (2019) Bassi, M.: Quantification d’incertitudes et objets en dimension infinie. Ph.D. thesis, Normandie University, INSA Rouen Normandie (2019)
2.
go back to reference Bassi, M., Pagnacco, E., de Cursi, E.S.: Uncertainty quantification and statistics of curves and surfaces, pp. 17–37. Springer, Cham (2020) Bassi, M., Pagnacco, E., de Cursi, E.S.: Uncertainty quantification and statistics of curves and surfaces, pp. 17–37. Springer, Cham (2020)
3.
go back to reference Bassi, M., Souza de Cursi, J.E., Ellaia, R.: Generalized Fourier series for representing random variables and application for quantifying uncertainties in optimization. In: 3rd International Symposium on Uncertainty Quantification and Stochastic Modeling (2016) Bassi, M., Souza de Cursi, J.E., Ellaia, R.: Generalized Fourier series for representing random variables and application for quantifying uncertainties in optimization. In: 3rd International Symposium on Uncertainty Quantification and Stochastic Modeling (2016)
4.
go back to reference Bassi, M., Cursi, E.S.D., Pagnacco, E., Ellaia, R.: Statistics of the pareto front in multi-objective optimization under uncertainties. Lat. Am. J. Solids Struct. 15(11), 1015–1036 (2018)CrossRef Bassi, M., Cursi, E.S.D., Pagnacco, E., Ellaia, R.: Statistics of the pareto front in multi-objective optimization under uncertainties. Lat. Am. J. Solids Struct. 15(11), 1015–1036 (2018)CrossRef
5.
go back to reference Rémi, C., de Cursi, E.S.: Statistics of uncertain dynamical systems. In: Topping, B.H.V., Adam, J.M., Pallares, F.J., Bru, R., Romero, M.L. (eds.) Proceedings of the Tenth International Conference on Computational Structures Technology, pp. 541–561. Civil-Comp Press, Stirlingshire (2010) Rémi, C., de Cursi, E.S.: Statistics of uncertain dynamical systems. In: Topping, B.H.V., Adam, J.M., Pallares, F.J., Bru, R., Romero, M.L. (eds.) Proceedings of the Tenth International Conference on Computational Structures Technology, pp. 541–561. Civil-Comp Press, Stirlingshire (2010)
6.
go back to reference de Cursi, E.S.: Variational Methods for Engineers with Matlab, 1st edn. Wiley, London (2015)CrossRef de Cursi, E.S.: Variational Methods for Engineers with Matlab, 1st edn. Wiley, London (2015)CrossRef
7.
go back to reference Ellaia, R., Habbal, A., Pagnacco, E.: A new accelerated multi-objective particle swarm algorithm. Applications to truss topology optimization. In: 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, FL, United States (May 2013) Ellaia, R., Habbal, A., Pagnacco, E.: A new accelerated multi-objective particle swarm algorithm. Applications to truss topology optimization. In: 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, FL, United States (May 2013)
8.
go back to reference de Cursi, E.S.: Representation of solutions in variational calculus. In: Tarocco, E., de Souza Neto, E.A., Novotny, A.A. (eds.) Variational Formulations in Mechanics: Theory and Applications. International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Espagne, pp. 87–106 (2007) de Cursi, E.S.: Representation of solutions in variational calculus. In: Tarocco, E., de Souza Neto, E.A., Novotny, A.A. (eds.) Variational Formulations in Mechanics: Theory and Applications. International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Espagne, pp. 87–106 (2007)
9.
go back to reference de Cursi, E.S., Sampaio, R.: Uncertainty Quantification and Stochastic Modeling with Matlab, 1st edn. Elsevier Science Publishers B. V., Amsterdam (2015)MATH de Cursi, E.S., Sampaio, R.: Uncertainty Quantification and Stochastic Modeling with Matlab, 1st edn. Elsevier Science Publishers B. V., Amsterdam (2015)MATH
10.
go back to reference Zidani, H.: Representation de solutions en optimisation continue, multiobjectif et applications. Ph.D. thesis, INSA Rouen (2013) Zidani, H.: Representation de solutions en optimisation continue, multiobjectif et applications. Ph.D. thesis, INSA Rouen (2013)
11.
go back to reference Hafidi, Z., de Cursi, E.S., Ellaia, R.: Numerical approximation of the solution in infinite dimensional global optimization using a representation formula. J. Glob. Optim. 65(2), 261–281 (2016)MathSciNetCrossRef Hafidi, Z., de Cursi, E.S., Ellaia, R.: Numerical approximation of the solution in infinite dimensional global optimization using a representation formula. J. Glob. Optim. 65(2), 261–281 (2016)MathSciNetCrossRef
Metadata
Title
Uncertainty Quantification of Pareto Fronts
Authors
Mohamed Bassi
Emmanuel Pagnacco
Roberta Lima
Eduardo Souza de Cursi
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-53669-5_28