Skip to main content
Top
Published in:

11-10-2022

Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence

Authors: Jose A. Fernandez-Leon, Gerardo G. Acosta

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Uncovering how mental representations acquire, recall, and decode spatial information about relative locations and environmental attributes (cognitive map) involves different challenges. This work is geared towards theoretical discussions on the controversial issue of cognitive scalability for understanding cognitive map emergence from place and grid cells at the intersection between neuroscience and artificial intelligence. In our view, different place maps emerge from parallel and hierarchical neural structures supporting a global cognitive map. The mechanisms sustaining these maps do not only process sensory input but also assign the input to a location. Contentious issues are presented around these concepts and provide concrete suggestions for moving the field forward. We recommend approaching the described challenges guided by AI-based theoretical aspects of encoded place instead of based chiefly on technological aspects to study the brain. SIGNIFICANCE: A formal difference exists between the concepts of spatial representations between experimental neuroscientists and computer scientists and engineers in the so-called neural-based autonomous navigation field. From a neuroscience perspective, we consider the position of an organism’s body to be entirely determined by translational spatial information (e.g., visited places and velocities). An organism predicts where it is at a specific time using continuous or discrete spatial functions embedded into navigation systems. From these functions, we infer that the concept of place has emerged. However, from an engineering standpoint, we represent structured scaffolds of behavioral processes to determine movements from the organism’s current position to some other spatial locations. These scaffolds are certainly affected by the system’s designer. Therefore, the coding of place, in this case, is predetermined. The contrast between emergent cognitive map through inputs versus predefined spatial recognition between two fields creates an inconsistency. Clarifying this tension can inform us on how the brain encodes abstract knowledge to represent spatial positions, which hints at a universal theory of cognition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Engelbrecht AP. Computational Intelligence: An Introduction: Second Edition. Computational Intelligence: An Introduction: Second Edition. 2007. Engelbrecht AP. Computational Intelligence: An Introduction: Second Edition. Computational Intelligence: An Introduction: Second Edition. 2007.
2.
go back to reference Macpherson T, Churchland A, Sejnowski T, DiCarlo J, Kamitani Y, Takahashi H, et al. Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research. Neural Networks. 2021. Macpherson T, Churchland A, Sejnowski T, DiCarlo J, Kamitani Y, Takahashi H, et al. Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research. Neural Networks. 2021.
3.
go back to reference Hong G, Lieber CM. Novel electrode technologies for neural recordings. Nat Rev Neurosci. 2019. Hong G, Lieber CM. Novel electrode technologies for neural recordings. Nat Rev Neurosci. 2019.
4.
go back to reference Weisenburger S, Vaziri A. A guide to emerging technologies for large-scale and whole-brain optical imaging of neuronal activity. Ann Rev Neurosci. 2018. Weisenburger S, Vaziri A. A guide to emerging technologies for large-scale and whole-brain optical imaging of neuronal activity. Ann Rev Neurosci. 2018.
5.
go back to reference Friston KJ. Modalities, modes, and models in functional neuroimaging. Science. 2009. Friston KJ. Modalities, modes, and models in functional neuroimaging. Science. 2009.
6.
go back to reference Josselyn SA, Tonegawa S. Memory engrams: Recalling the past and imagining the future. Science. 2020. Josselyn SA, Tonegawa S. Memory engrams: Recalling the past and imagining the future. Science. 2020.
7.
go back to reference Lerner TN, Ye L, Deisseroth K. Communication in Neural Circuits: Tools, Opportunities, and Challenges. Cell. 2016. Lerner TN, Ye L, Deisseroth K. Communication in Neural Circuits: Tools, Opportunities, and Challenges. Cell. 2016.
8.
go back to reference Buzsáki G. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004. Buzsáki G. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004.
9.
go back to reference Urai AE, Doiron B, Leifer AM, Churchland AK. Large-scale neural recordings call for new insights to link brain and behavior. Nat Neurosci. 2022. Urai AE, Doiron B, Leifer AM, Churchland AK. Large-scale neural recordings call for new insights to link brain and behavior. Nat Neurosci. 2022.
10.
go back to reference Hawkins J, Lewis M, Klukas M, Purdy S, Ahmad S. A framework for intelligence and cortical function based on grid cells in the neocortex. Front Neural Circuits. 2019. Hawkins J, Lewis M, Klukas M, Purdy S, Ahmad S. A framework for intelligence and cortical function based on grid cells in the neocortex. Front Neural Circuits. 2019.
11.
go back to reference O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971.
12.
go back to reference O’Keefe J, Nadel L. Hippocampus as cognitive map. Behav Brain Sci. 1979. O’Keefe J, Nadel L. Hippocampus as cognitive map. Behav Brain Sci. 1979.
13.
go back to reference Wu X, Zheng Z, Weng J. On Machine Thinking. In: Proceedings of the International Joint Conference on Neural Networks. 2021. Wu X, Zheng Z, Weng J. On Machine Thinking. In: Proceedings of the International Joint Conference on Neural Networks. 2021.
14.
go back to reference O’Keefe J, Krupic J. Do hippocampal pyramidal cells respond to nonspatial stimuli? Physiol Rev. 2021. O’Keefe J, Krupic J. Do hippocampal pyramidal cells respond to nonspatial stimuli? Physiol Rev. 2021.
15.
go back to reference Dong C, Madar AD, Sheffield MEJ. Distinct place cell dynamics in CA1 and CA3 encode experience in new environments. Nat Commun. 2021. Dong C, Madar AD, Sheffield MEJ. Distinct place cell dynamics in CA1 and CA3 encode experience in new environments. Nat Commun. 2021.
16.
go back to reference Moser EI, Kropff E, Moser MB. Place cells, grid cells, and the brain’s spatial representation system. Ann Rev Neurosci. 2008. Moser EI, Kropff E, Moser MB. Place cells, grid cells, and the brain’s spatial representation system. Ann Rev Neurosci. 2008.
17.
go back to reference Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005.
18.
go back to reference Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. Spatial representation in the entorhinal cortex. Science. (80);2004. Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. Spatial representation in the entorhinal cortex. Science. (80);2004.
19.
go back to reference Sorscher B, Mel GC, Ganguli S, Ocko SA. A unified theory for the origin of grid cells through the lens of pattern formation. In: Advances in Neural Information Processing Systems. 2019. Sorscher B, Mel GC, Ganguli S, Ocko SA. A unified theory for the origin of grid cells through the lens of pattern formation. In: Advances in Neural Information Processing Systems. 2019.
20.
go back to reference Bush D, Barry C, Manson D, Burgess N. Using Grid Cells for Navigation. Neuron. 2015. Bush D, Barry C, Manson D, Burgess N. Using Grid Cells for Navigation. Neuron. 2015.
21.
go back to reference McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. Path integration and the neural basis of the “cognitive map.” Nat Rev Neurosci. 2006. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. Path integration and the neural basis of the “cognitive map.” Nat Rev Neurosci. 2006.
22.
go back to reference Erdem UM, Hasselmo M. A goal-directed spatial navigation model using forward trajectory planning based on grid cells. Eur J Neurosci. 2012. Erdem UM, Hasselmo M. A goal-directed spatial navigation model using forward trajectory planning based on grid cells. Eur J Neurosci. 2012.
23.
go back to reference Gardner RJ, Hermansen E, Pachitariu M, Burak Y, Baas NA, Dunn BA, et al. Toroidal topology of population activity in grid cells. Nature. 2022. Gardner RJ, Hermansen E, Pachitariu M, Burak Y, Baas NA, Dunn BA, et al. Toroidal topology of population activity in grid cells. Nature. 2022.
24.
go back to reference Jacobs LF, Schenk F. Unpacking the Cognitive Map: The Parallel Map Theory of Hippocampal Function. Psychological Review. 2003. Jacobs LF, Schenk F. Unpacking the Cognitive Map: The Parallel Map Theory of Hippocampal Function. Psychological Review. 2003.
25.
go back to reference Jacobs LF. The evolution of the cognitive map. In: Brain, Behavior and Evolution. 2003. Jacobs LF. The evolution of the cognitive map. In: Brain, Behavior and Evolution. 2003.
26.
go back to reference Redish a. D. Beyond the cognitive map: from place cells to episodic memory. Cambridge, MA MIT Press. 1999. Redish a. D. Beyond the cognitive map: from place cells to episodic memory. Cambridge, MA MIT Press. 1999.
27.
go back to reference Arkin RC. Behaviour-Based Robotics. Robotics. 1998. Arkin RC. Behaviour-Based Robotics. Robotics. 1998.
28.
go back to reference Guanella A, Kiper D, Verschure P. A model of grid cells based on a twisted torus topology. In: Int J Neural Sys. 2007. Guanella A, Kiper D, Verschure P. A model of grid cells based on a twisted torus topology. In: Int J Neural Sys. 2007.
29.
go back to reference Santos-Pata D, Zucca R, Low SC, Verschure PFMJ. Size matters: How scaling affects the interaction between grid and border cells. Front Comput Neurosci. 2017. Santos-Pata D, Zucca R, Low SC, Verschure PFMJ. Size matters: How scaling affects the interaction between grid and border cells. Front Comput Neurosci. 2017.
30.
go back to reference Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, Kubie JL, et al. Grid cells require excitatory drive from the hippocampus. Nat Neurosci. 2013. Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, Kubie JL, et al. Grid cells require excitatory drive from the hippocampus. Nat Neurosci. 2013.
31.
go back to reference Zhao R, Grunke SD, Keralapurath MM, Yetman MJ, Lam A, Lee TC, et al. Impaired Recall of Positional Memory following Chemogenetic Disruption of Place Field Stability. Cell Rep. 2016. Zhao R, Grunke SD, Keralapurath MM, Yetman MJ, Lam A, Lee TC, et al. Impaired Recall of Positional Memory following Chemogenetic Disruption of Place Field Stability. Cell Rep. 2016.
32.
go back to reference Henriksen EJ, Colgin LL, Barnes CA, Witter MP, Moser MB, Moser EI. Spatial representation along the proximodistal axis of CA1. Neuron. 2010. Henriksen EJ, Colgin LL, Barnes CA, Witter MP, Moser MB, Moser EI. Spatial representation along the proximodistal axis of CA1. Neuron. 2010.
33.
go back to reference Zhang SJ, Ye J, Miao C, Tsao A, Cerniauskas I, Ledergerber D, et al. Optogenetic dissection of entorhinal-hippocampal functional connectivity. Science. (80);2013. Zhang SJ, Ye J, Miao C, Tsao A, Cerniauskas I, Ledergerber D, et al. Optogenetic dissection of entorhinal-hippocampal functional connectivity. Science. (80);2013.
34.
go back to reference Lu L, Leutgeb JK, Tsao A, Henriksen EJ, Leutgeb S, Barnes CA, et al. Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex. Nat Neurosci. 2013. Lu L, Leutgeb JK, Tsao A, Henriksen EJ, Leutgeb S, Barnes CA, et al. Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex. Nat Neurosci. 2013.
35.
go back to reference Deadwyler SA, West JR, Cotman CW, Lynch G. Physiological studies of the reciprocal connections between the hippocampus and entorhinal cortex. Exp Neurol. 1975. Deadwyler SA, West JR, Cotman CW, Lynch G. Physiological studies of the reciprocal connections between the hippocampus and entorhinal cortex. Exp Neurol. 1975.
36.
go back to reference Lian Y, Burkitt AN. Learning an efficient hippocampal place map from entorhinal inputs using non-negative sparse coding. eNeuro. 2021. Lian Y, Burkitt AN. Learning an efficient hippocampal place map from entorhinal inputs using non-negative sparse coding. eNeuro. 2021.
37.
go back to reference Dordek Y, Soudry D, Meir R, Derdikman D. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. Elife. 2016. Dordek Y, Soudry D, Meir R, Derdikman D. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. Elife. 2016.
38.
go back to reference Edvardsen V. Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network. Nat Comput. 2019. Edvardsen V. Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network. Nat Comput. 2019.
39.
go back to reference Fernandez-Leon JA, Acosta GG, Mayosky MA. Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation. Rob Auton Syst. 2009. Fernandez-Leon JA, Acosta GG, Mayosky MA. Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation. Rob Auton Syst. 2009.
40.
go back to reference Brooks RA. A Robust Layered Control System For A Mobile Robot. IEEE J Robot Autom. 1986. Brooks RA. A Robust Layered Control System For A Mobile Robot. IEEE J Robot Autom. 1986.
41.
go back to reference Edvardsen V, Bicanski A, Burgess N. Navigating with grid and place cells in cluttered environments. Hippocampus. 2020. Edvardsen V, Bicanski A, Burgess N. Navigating with grid and place cells in cluttered environments. Hippocampus. 2020.
42.
go back to reference Tommasi L, Thinus-Blanc C. Generalization in Place Learning and Geometry Knowledge in Rats. Learn Mem. 2004. Tommasi L, Thinus-Blanc C. Generalization in Place Learning and Geometry Knowledge in Rats. Learn Mem. 2004.
43.
go back to reference Krupic J, Bauza M, Burton S, O’Keefe J. Framing the grid: effect of boundaries on grid cells and navigation. J Physiol. 2016. Krupic J, Bauza M, Burton S, O’Keefe J. Framing the grid: effect of boundaries on grid cells and navigation. J Physiol. 2016.
44.
go back to reference Bicanski A, Burgess N. Neuronal vector coding in spatial cognition. Nat Rev Neurosci. 2020. Bicanski A, Burgess N. Neuronal vector coding in spatial cognition. Nat Rev Neurosci. 2020.
45.
go back to reference Acosta GG, Curti HJ, Calvo OA. Autonomous underwater pipeline inspection in AUTOTRACKER Project: The navigation module. In: Oceans 2005 - Europe. 2005. Acosta GG, Curti HJ, Calvo OA. Autonomous underwater pipeline inspection in AUTOTRACKER Project: The navigation module. In: Oceans 2005 - Europe. 2005.
46.
go back to reference Guanella A, Verschure PFMJ. Prediction of the position of an animal based on populations of grid and place cells: A comparative simulation study. J Integr Neurosci. 2007. Guanella A, Verschure PFMJ. Prediction of the position of an animal based on populations of grid and place cells: A comparative simulation study. J Integr Neurosci. 2007.
47.
go back to reference Greeno JG, Moore JL. Situativity and Symbols: Response to Vera and Simon. Cogn Sci. 1993. Greeno JG, Moore JL. Situativity and Symbols: Response to Vera and Simon. Cogn Sci. 1993.
48.
go back to reference Mountcastle VB. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol. 1957. Mountcastle VB. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol. 1957.
49.
go back to reference Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat’s striate cortex. J Physiol. 1959. Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat’s striate cortex. J Physiol. 1959.
50.
go back to reference Hawkins J, Ahmad S, Cui Y. A theory of how columns in the neocortex enable learning the structure of the world. Front Neural Circuits. 2017. Hawkins J, Ahmad S, Cui Y. A theory of how columns in the neocortex enable learning the structure of the world. Front Neural Circuits. 2017.
51.
go back to reference Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, Bernard A, et al. Hierarchical organization of cortical and thalamic connectivity. Nature. 2019. Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, Bernard A, et al. Hierarchical organization of cortical and thalamic connectivity. Nature. 2019.
52.
go back to reference Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991. Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991.
53.
go back to reference Barlow H. Sensory Mechanisms, the Reduction of Redundancy, and Intelligence. NPL Symp Mech Thought Process. 1959. Barlow H. Sensory Mechanisms, the Reduction of Redundancy, and Intelligence. NPL Symp Mech Thought Process. 1959.
54.
go back to reference Földiák P. Forming sparse representations by local anti-Hebbian learning. Biol Cybern. 1990. Földiák P. Forming sparse representations by local anti-Hebbian learning. Biol Cybern. 1990.
55.
go back to reference Bell AJ, Sejnowski TJ. The “independent components” of natural scenes are edge filters. Vision Res. 1997. Bell AJ, Sejnowski TJ. The “independent components” of natural scenes are edge filters. Vision Res. 1997.
56.
go back to reference Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996. Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996.
57.
go back to reference Chalk M, Marre O, Tkačik G. Toward a unified theory of efficient, predictive, and sparse coding. Proc Natl Acad Sci USA. 2018. Chalk M, Marre O, Tkačik G. Toward a unified theory of efficient, predictive, and sparse coding. Proc Natl Acad Sci USA. 2018.
58.
go back to reference Clayton NS, Salwiczek LH, Dickinson A. Episodic memory. Curr Biol. 2007. Clayton NS, Salwiczek LH, Dickinson A. Episodic memory. Curr Biol. 2007.
59.
go back to reference Ocko SA, Hardcastle K, Giocomo LM, Ganguli S. Emergent elasticity in the neural code for space. Proc Natl Acad Sci USA. 2018. Ocko SA, Hardcastle K, Giocomo LM, Ganguli S. Emergent elasticity in the neural code for space. Proc Natl Acad Sci USA. 2018.
60.
go back to reference Colgin LL, Moser EI, Moser MB. Understanding memory through hippocampal remapping. Trends in Neurosci. 2008. Colgin LL, Moser EI, Moser MB. Understanding memory through hippocampal remapping. Trends in Neurosci. 2008.
61.
go back to reference Muller RU, Kubie JL. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci. 1987. Muller RU, Kubie JL. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci. 1987.
62.
go back to reference Minsky M. Steps Toward Artificial Intelligence. Proceedings of the IRE. 1961. Minsky M. Steps Toward Artificial Intelligence. Proceedings of the IRE. 1961.
63.
go back to reference Banino A, Barry C, Uria B, Blundell C, Lillicrap T, Mirowski P, et al. Vector-based navigation using grid-like representations in artificial agents. Nature. 2018. Banino A, Barry C, Uria B, Blundell C, Lillicrap T, Mirowski P, et al. Vector-based navigation using grid-like representations in artificial agents. Nature. 2018.
64.
go back to reference Andersson SO, Moser EI, Moser MB. Visual stimulus features that elicit activity in object-vector cells. Commun Biol. 2021. Andersson SO, Moser EI, Moser MB. Visual stimulus features that elicit activity in object-vector cells. Commun Biol. 2021.
65.
go back to reference Fuhs MC, Redish AD, Touretzky DS. A Visually Driven Hippocampal Place Cell Model. In: Comp Neurosci. 1998. Fuhs MC, Redish AD, Touretzky DS. A Visually Driven Hippocampal Place Cell Model. In: Comp Neurosci. 1998.
66.
go back to reference O’keefe J, Conway DH. Experimental Brain Research Hippocampal Place Units in the Freely Moving Rat: Why They Fire Where They Fire. Brain Res. 1978. O’keefe J, Conway DH. Experimental Brain Research Hippocampal Place Units in the Freely Moving Rat: Why They Fire Where They Fire. Brain Res. 1978.
67.
go back to reference Høydal ØA, Skytøen ER, Andersson SO, Moser MB, Moser EI. Object-vector coding in the medial entorhinal cortex. Nature. 2019. Høydal ØA, Skytøen ER, Andersson SO, Moser MB, Moser EI. Object-vector coding in the medial entorhinal cortex. Nature. 2019.
68.
go back to reference Barry C, Lever C, Hayman R, Hartley T, Burton S, O’Keefe J, et al. The boundary vector cell model of place cell firing and spatial memory. Rev Neurosci. 2006. Barry C, Lever C, Hayman R, Hartley T, Burton S, O’Keefe J, et al. The boundary vector cell model of place cell firing and spatial memory. Rev Neurosci. 2006.
69.
go back to reference Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N. Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci. 2009. Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N. Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci. 2009.
70.
go back to reference O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993. O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993.
71.
go back to reference Burgess N, O’Keefe J. Models of place and grid cell firing and theta rhythmicity. Curr Opin Neurobiol. 2011. Burgess N, O’Keefe J. Models of place and grid cell firing and theta rhythmicity. Curr Opin Neurobiol. 2011.
72.
go back to reference Jercog PE, Ahmadian Y, Woodruff C, Deb-Sen R, Abbott LF, Kandel ER. Heading direction with respect to a reference point modulates place-cell activity. Nat Commun. 2019. Jercog PE, Ahmadian Y, Woodruff C, Deb-Sen R, Abbott LF, Kandel ER. Heading direction with respect to a reference point modulates place-cell activity. Nat Commun. 2019.
73.
go back to reference Wang Y, Xu X, Wang R. An energy model of place cell network in three dimensional space. Front Neurosci. 2018. Wang Y, Xu X, Wang R. An energy model of place cell network in three dimensional space. Front Neurosci. 2018.
74.
go back to reference Sarel A, Finkelstein A, Las L, Ulanovsky N. Vectorial representation of spatial goals in the hippocampus of bats. Science. 2017;(80). Sarel A, Finkelstein A, Las L, Ulanovsky N. Vectorial representation of spatial goals in the hippocampus of bats. Science. 2017;(80).
75.
go back to reference LaChance PA, Todd TP, Taube JS. A sense of space in postrhinal cortex. Science. 2019;(80). LaChance PA, Todd TP, Taube JS. A sense of space in postrhinal cortex. Science. 2019;(80).
76.
go back to reference Boccara CN, Sargolini F, Thoresen VH, Solstad T, Witter MP, Moser EI, et al. Grid cells in pre-and parasubiculum. Nat Neurosci. 2010. Boccara CN, Sargolini F, Thoresen VH, Solstad T, Witter MP, Moser EI, et al. Grid cells in pre-and parasubiculum. Nat Neurosci. 2010.
77.
go back to reference Taube JS, Muller RU, Ranck JB. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci. 1990. Taube JS, Muller RU, Ranck JB. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci. 1990.
78.
go back to reference Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science. 2006;(80). Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science. 2006;(80).
79.
go back to reference Kropff E, Carmichael JE, Moser MB, Moser EI. Speed cells in the medial entorhinal cortex. Nature. 2015. Kropff E, Carmichael JE, Moser MB, Moser EI. Speed cells in the medial entorhinal cortex. Nature. 2015.
80.
go back to reference Kropff E, Carmichael JE, Moser EI, Moser MB. Frequency of theta rhythm is controlled by acceleration, but not speed, in running rats. Neuron. 2021. Kropff E, Carmichael JE, Moser EI, Moser MB. Frequency of theta rhythm is controlled by acceleration, but not speed, in running rats. Neuron. 2021.
81.
go back to reference Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI. Representation of geometric borders in the entorhinal cortex. Science. 2008;(80). Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI. Representation of geometric borders in the entorhinal cortex. Science. 2008;(80).
82.
go back to reference Moser EI, Moser MB. Hippocampus and Neural Representations. In: Encyclopedia of Neuroscience. 2009. Moser EI, Moser MB. Hippocampus and Neural Representations. In: Encyclopedia of Neuroscience. 2009.
83.
go back to reference Touretzky DS, Redish AD. Theory of rodent navigation based on interacting representations of space. Hippocampus. 1996. Touretzky DS, Redish AD. Theory of rodent navigation based on interacting representations of space. Hippocampus. 1996.
84.
go back to reference Burgess N, Recce M, O’Keefe J. A model of hippocampal function. Neural Networks. 1994. Burgess N, Recce M, O’Keefe J. A model of hippocampal function. Neural Networks. 1994.
85.
go back to reference Jeffery KJ, Anderson MI, Hayman R, Chakraborty S. A proposed architecture for the neural representation of spatial context. Neurosci Biobehav Rev. 2004. Jeffery KJ, Anderson MI, Hayman R, Chakraborty S. A proposed architecture for the neural representation of spatial context. Neurosci Biobehav Rev. 2004.
86.
go back to reference Dayan P, Abbott LF. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Comp Mathematical Model Neural. 2001. Dayan P, Abbott LF. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Comp Mathematical Model Neural. 2001.
87.
go back to reference Wiskott L, Sejnowski TJ. Slow feature analysis: Unsupervised learning of invariances. Neural Comput. 2002. Wiskott L, Sejnowski TJ. Slow feature analysis: Unsupervised learning of invariances. Neural Comput. 2002.
88.
go back to reference Cepelewicz J. The brain maps out ideas and memories like spaces. Quanta. 2019. Cepelewicz J. The brain maps out ideas and memories like spaces. Quanta. 2019.
89.
go back to reference Roe AW. Columnar connectome: Toward a mathematics of brain function. Netw Neurosci. 2019. Roe AW. Columnar connectome: Toward a mathematics of brain function. Netw Neurosci. 2019.
Metadata
Title
Uncovering the Secrets of the Concept of Place in Cognitive Maps Aided by Artificial Intelligence
Authors
Jose A. Fernandez-Leon
Gerardo G. Acosta
Publication date
11-10-2022
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10064-w

Premium Partner