Skip to main content
Top
Published in: Emission Control Science and Technology 2/2020

25-11-2019 | SPECIAL ISSUE: 2019 MODEGAT September 8-10, Bad Herrenalb, Germany

Understanding Factors Affecting the Balance Point (and Rate of Balance Point Approach) of a Diesel Particulate Filter: an Analytical Expression for the Balance Point Soot Loading

Author: Timothy C. Watling

Published in: Emission Control Science and Technology | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Diesel particulate filters (DPF) are commonly used to remove harmful particulate matter (PM) from the exhaust of diesel engines. If the DPF is subjected to a constant inlet condition, under favourable conditions, the soot loading will eventually stabilise at a constant value, when the rate of soot accumulation is matched by the rate of soot oxidation by NO2; this is known as the balance point. The balance point soot loading (BPSL) is commonly used as a measure of the effectiveness of passive soot oxidation. Generally, the DPF will take a long time to reach the balance point, making determining BPSLs, experimentally or using a 1-dimensional model, extremely time-consuming. This paper offers an alternative. By making some assumptions (constant temperature and through-wall gas velocity along the DPF), an equation allowing instantaneous BPSL prediction is derived, as is an equation predicting the variation in soot loading with time. Both give comparable predictions to a 1-dimensional model. The equation predicts that the BPSL is independent of the substrate, is proportional to the space velocity (but independent of DPF size) and is dependent on NO2/PM ratio (but independent of NO2 concentration). Finally, this approximate approach is applied to the prediction of BPSL and evolution of soot loading for a DPF subjected to a repeated transient drive cycle. In this case, it is no longer possible to obtain a simple equation, but still the prediction is obtained much more quickly than with a 1-dimensional model. The prediction is in excellent agreement with the 1-dimensional model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Note that space velocity is evaluated at the actual temperature.
 
2
DPF dimensions are given as diameter × length.
 
3
Note the intermediate steps in the derivation of Eq. (18): Multiplying out the round brackets in Eq. (7) and substitution of Eq. (10) gives:
$$ \frac{dS}{dt}={M}_S\kern0.1em {S}_V\kern0.1em {\mathrm{C}}_{\mathrm{S}}\left[1-\upgamma +\upgamma \mathrm{exp}\left(-{\mathrm{Da}}^{\prime}\kern0.1em \mathrm{S}\right)\right] $$
Substituting in Eq. (17) for the second γ gives:
$$ \frac{dS}{dt}={M}_S\kern0.1em {S}_V\kern0.1em {\mathrm{C}}_{\mathrm{S}}\left[1-\upgamma +\left(\upgamma -1\right)\exp \left(-{\mathrm{Da}}^{\prime}\left(S-{S}_{\infty}\right)\right)\right]\kern0.20em $$
This simplifies to Eq. (18).
 
4
Bai et al. [13] report engine out PM in the range 2–6 × 10−7 kg s−1 in steady-state tests and up to 10−5 kg s−1 over the WHTC. Figure 8 of Zhang et al. [22] shows that 40 g of PM is produced in 245 min, corresponding to a PM mass flow of 2.7 × 10−6 kg s−1.
 
Literature
1.
go back to reference Kandylas, I.P., Haralampous, O.A., Koltsakis, G.C.: Diesel soot oxidation with NO2: engine experiments and simulations. Ind. Eng. Chem. Res. 41, 5372–5384 (2002)CrossRef Kandylas, I.P., Haralampous, O.A., Koltsakis, G.C.: Diesel soot oxidation with NO2: engine experiments and simulations. Ind. Eng. Chem. Res. 41, 5372–5384 (2002)CrossRef
4.
go back to reference Guan, B., Zhan, R., Lin, H., Huang, Z.: Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. J. Environ. Man. 154, 225–258 (2015)CrossRef Guan, B., Zhan, R., Lin, H., Huang, Z.: Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. J. Environ. Man. 154, 225–258 (2015)CrossRef
5.
go back to reference Kittelson, D.B.: Engines and nanoparticles: a review. J. Aerosol Sci. 29, 575–588 (1998)CrossRef Kittelson, D.B.: Engines and nanoparticles: a review. J. Aerosol Sci. 29, 575–588 (1998)CrossRef
6.
go back to reference Burtscher, H.: Physical characterization of particulate emissions from diesel engines: a review. J. Aerosol Sci. 36, 896–032 (2005)CrossRef Burtscher, H.: Physical characterization of particulate emissions from diesel engines: a review. J. Aerosol Sci. 36, 896–032 (2005)CrossRef
7.
go back to reference Maricq, M.M.: Chemical characterization of particulate emissions from diesel engines: a review. J. Aerosol Sci. 38, 1079–1118 (2007)CrossRef Maricq, M.M.: Chemical characterization of particulate emissions from diesel engines: a review. J. Aerosol Sci. 38, 1079–1118 (2007)CrossRef
8.
go back to reference Benbrahim-Tallaa, L., Baan, R.A., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., Guha, N., Loomis, D., Straif, K.: Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. The Lancet Oncology. 13(7), 663–664 (2012)CrossRef Benbrahim-Tallaa, L., Baan, R.A., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., Guha, N., Loomis, D., Straif, K.: Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. The Lancet Oncology. 13(7), 663–664 (2012)CrossRef
9.
go back to reference Landrigan, P.J., Fuller, R., Acosta, N.J.R., Adeyi, O., Arnold, R., Basu, N., Baldé, A.B., Bertollini, R., Bose-O’Reilly, S., Boufford, J.I., Breysse, P.N., Chiles, T., Mahidol, C., Coll-Seck, A.M., Cropper, M.L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D., Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K.V., McTeer, M.A., Murray, C.J.L., Ndahimananjara, J.D., Perera, F., Potočnik, J., Preker, A.S., Ramesh, J., Rockström, J., Salinas, C., Samson, L.D., Sandilya, K., Sly, P.D., Smith, K.R., Steiner, A., Stewart, R.B., Suk, W.A., van Schayck, O.C.P., Yadama, G.N., Yumkella, K., Zhong, M.: The Lancet Commission on pollution and health. Lancet. 391, 462–512 (2018)CrossRef Landrigan, P.J., Fuller, R., Acosta, N.J.R., Adeyi, O., Arnold, R., Basu, N., Baldé, A.B., Bertollini, R., Bose-O’Reilly, S., Boufford, J.I., Breysse, P.N., Chiles, T., Mahidol, C., Coll-Seck, A.M., Cropper, M.L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D., Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K.V., McTeer, M.A., Murray, C.J.L., Ndahimananjara, J.D., Perera, F., Potočnik, J., Preker, A.S., Ramesh, J., Rockström, J., Salinas, C., Samson, L.D., Sandilya, K., Sly, P.D., Smith, K.R., Steiner, A., Stewart, R.B., Suk, W.A., van Schayck, O.C.P., Yadama, G.N., Yumkella, K., Zhong, M.: The Lancet Commission on pollution and health. Lancet. 391, 462–512 (2018)CrossRef
10.
go back to reference York, A.P.E., Ahmadinejad, M., Watling, T.C., Walker, A.P., Cox, J.P., Gast, J., Blakeman, P.G., Allansson, R.: Modeling of the catalyzed continuously regenerating diesel particulate filter (CCR-DPF) system: model development and passive regeneration studies. SAE Technical Paper 2007-01-0043 (2007) York, A.P.E., Ahmadinejad, M., Watling, T.C., Walker, A.P., Cox, J.P., Gast, J., Blakeman, P.G., Allansson, R.: Modeling of the catalyzed continuously regenerating diesel particulate filter (CCR-DPF) system: model development and passive regeneration studies. SAE Technical Paper 2007-01-0043 (2007)
11.
go back to reference Ahmadinejad, M., Tsolakis, A., Becker, J.M., Goersmann, C.F., Newman, A.D., Watling, T.C.: Modelling of soot oxidation by NO2 in a diesel particulate filter. SAE Int. J. Fuels Lubr. 5, 359–369 (2012)CrossRef Ahmadinejad, M., Tsolakis, A., Becker, J.M., Goersmann, C.F., Newman, A.D., Watling, T.C.: Modelling of soot oxidation by NO2 in a diesel particulate filter. SAE Int. J. Fuels Lubr. 5, 359–369 (2012)CrossRef
12.
go back to reference Jinke, G., Hengyu, L., Gang, L., Jiaqiang, E. Jia, D., Fujie, Z: Simulation and grey relational analysis of continuous regeneration “balance point” of diesel particulate filters. 2011 International Conference on Electric Information and Control Engineering, Wuhan, pp. 5297-5301, (2011), https://doi.org/10.1109/ICEICE.2011.5777158 Jinke, G., Hengyu, L., Gang, L., Jiaqiang, E. Jia, D., Fujie, Z: Simulation and grey relational analysis of continuous regeneration “balance point” of diesel particulate filters. 2011 International Conference on Electric Information and Control Engineering, Wuhan, pp. 5297-5301, (2011), https://​doi.​org/​10.​1109/​ICEICE.​2011.​5777158
13.
go back to reference Bai, S., Tang, J., Wang, G., Li, G.: Soot loading estimation model and passive regeneration characteristics of DPF system for heavy-duty engine. Appl. Therm. Eng. 100, 1292–1298 (2016)CrossRef Bai, S., Tang, J., Wang, G., Li, G.: Soot loading estimation model and passive regeneration characteristics of DPF system for heavy-duty engine. Appl. Therm. Eng. 100, 1292–1298 (2016)CrossRef
15.
go back to reference Wurzenberger, J.C., Kutschi, S., Nikodem, A.: Ash transport and deposition, cake formation and segregation – a modeling study on the impact of ash on particulate filter performance. SAE Technical Paper 2019-01-0988 (2019) Wurzenberger, J.C., Kutschi, S., Nikodem, A.: Ash transport and deposition, cake formation and segregation – a modeling study on the impact of ash on particulate filter performance. SAE Technical Paper 2019-01-0988 (2019)
16.
go back to reference Stanmore, B.R., Tschamber, V., Brilhac, J.-F.: Oxidation of carbon by NOx, with particular reference to NO2 and N2O. Fuel. 87, 131–146 (2008)CrossRef Stanmore, B.R., Tschamber, V., Brilhac, J.-F.: Oxidation of carbon by NOx, with particular reference to NO2 and N2O. Fuel. 87, 131–146 (2008)CrossRef
17.
go back to reference Watling, T.C.: A one-dimensional model for square and octo-square asymmetric particulate filters with correct description of the channel and wall geometry. SAE Technical Paper 2018-01-0951 (2018) Watling, T.C.: A one-dimensional model for square and octo-square asymmetric particulate filters with correct description of the channel and wall geometry. SAE Technical Paper 2018-01-0951 (2018)
18.
go back to reference Watling, T.C.: Geometric description of the soot cake in a one-dimensional model of an octo-square asymmetric particulate filter. SAE Technical Paper 2019-01-0991 (2019) Watling, T.C.: Geometric description of the soot cake in a one-dimensional model of an octo-square asymmetric particulate filter. SAE Technical Paper 2019-01-0991 (2019)
19.
go back to reference Bissett, E.J.: Mathematical model of the thermal regeneration of a wall-flow monolith diesel particulate filter. Chem. Eng. Sci. 39, 1233–1244 (1984)CrossRef Bissett, E.J.: Mathematical model of the thermal regeneration of a wall-flow monolith diesel particulate filter. Chem. Eng. Sci. 39, 1233–1244 (1984)CrossRef
20.
go back to reference Watling, T.C., Ravenscroft, M.R., Cleeton, J.P.E., Rees, I.D., Wilkins, D.A.R.: Development of a particulate filter model for the prediction of backpressure: improved momentum balance and entrance and exit effect equations. SAE Int. J. Engines. 10, 1765–1794 (2017)CrossRef Watling, T.C., Ravenscroft, M.R., Cleeton, J.P.E., Rees, I.D., Wilkins, D.A.R.: Development of a particulate filter model for the prediction of backpressure: improved momentum balance and entrance and exit effect equations. SAE Int. J. Engines. 10, 1765–1794 (2017)CrossRef
21.
go back to reference Watling, T.C., Ravenscroft, M.R, Avery, G.: Development, validation and application of a model for an SCR catalyst coated diesel particulate filter. Catal. Today 188, 32-41 (2012)CrossRef Watling, T.C., Ravenscroft, M.R, Avery, G.: Development, validation and application of a model for an SCR catalyst coated diesel particulate filter. Catal. Today 188, 32-41 (2012)CrossRef
22.
go back to reference Zhang, Z., Yang, S., Johnson, J.: Modeling and numerical simulation of diesel particulate trap performance during loading and regeneration, SAE Technical Paper 2002-01-1019 (2002) Zhang, Z., Yang, S., Johnson, J.: Modeling and numerical simulation of diesel particulate trap performance during loading and regeneration, SAE Technical Paper 2002-01-1019 (2002)
24.
go back to reference Bogacki, P., Shampine, L.F.: A 3(2) Pair of Runge – Kutta Formulas. Appl. Math Lett. 2, 321–324 (1989)CrossRef Bogacki, P., Shampine, L.F.: A 3(2) Pair of Runge – Kutta Formulas. Appl. Math Lett. 2, 321–324 (1989)CrossRef
25.
go back to reference Shampine, L.F., Reichelt, M.W.: The Matlab ODE Suite. SIAM J. Sci. Comput. 18, 1–22 (1997)CrossRef Shampine, L.F., Reichelt, M.W.: The Matlab ODE Suite. SIAM J. Sci. Comput. 18, 1–22 (1997)CrossRef
Metadata
Title
Understanding Factors Affecting the Balance Point (and Rate of Balance Point Approach) of a Diesel Particulate Filter: an Analytical Expression for the Balance Point Soot Loading
Author
Timothy C. Watling
Publication date
25-11-2019
Publisher
Springer International Publishing
Published in
Emission Control Science and Technology / Issue 2/2020
Print ISSN: 2199-3629
Electronic ISSN: 2199-3637
DOI
https://doi.org/10.1007/s40825-019-00146-x

Other articles of this Issue 2/2020

Emission Control Science and Technology 2/2020 Go to the issue

Special Issue: 2018 CLEERS Workshop, September 18-20, Ann Arbor, Michigan, United States

Impact of Lubricant Oil Additives on the Performance of Pd-Based Three-Way Catalysts

SPECIAL ISSUE: 2019 MODEGAT September 8-10, Bad Herrenalb, Germany

Deposit Formation from Urea Injection: a Comprehensive Modeling Approach

SPECIAL ISSUE: 2019 MODEGAT September 8-10, Bad Herrenalb, Germany

Kinetic Modelling of Co3O4- and Pd/Co3O4-Catalyzed Wet Lean Methane Combustion

SPECIAL ISSUE: 2019 MODEGAT September 8-10, Bad Herrenalb, Germany

Static Cooling of a Monolith Converter: Influence of Radiation and Natural Convection

Premium Partner