Skip to main content
Top

2025 | OriginalPaper | Chapter

Understanding High-Frequency Modes in Electromechanical Impedance Measurement Using Noncontact Vibration Testing

Authors : Sourabh Sangle, William C. Rogers, Mohammad I. Albakri, Pablo A. Tarazaga

Published in: Data Science in Engineering Vol. 10

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electromechanical impedance (EMI) measurements have been used for several decades in noninvasive health monitoring across various domains. Typical EMI measurements are recorded via a bonded piezoelectric transducer, at a high-frequency range, typically 30 kHz and above. Because EMI measurements are single input single output, the peaks in these measurements can be related to either mechanical, electrical, or coupled electromechanical modes, especially at higher frequencies. An attempt to move towards understanding these higher frequency modes is made in this study. To undertake this, noncontact vibration testing is carried out using a laser Doppler vibrometer (LDV). The specimen under investigation is bonded with a piezoelectric transducer with a prescribed voltage applied across the transducer. A comparison between the peaks in a recorded EMI measurement and the noncontact measurement is presented. A better understanding of these modes can be utilized for a better association between high-frequency measurement and physical attributes. Furthermore, tracking variations can lead to physical insights and mode transitions that more accurately inform material changes (damage). This work discusses the first step in this building association by exploring the relation between directional information from the noncontact measurement and coupled electromechanical information from the EMI measurement. This chapter also highlights some challenges and future work needed to make this technique robust and versatile for different specimens.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Park, G., Sohn, H., Farrar, C.R., Inman, D.J., et al.: Overview of piezoelectric impedance-based health monitoring and path forward. Shock and Vibration Digest 35(6), 451–464 (2003)CrossRef Park, G., Sohn, H., Farrar, C.R., Inman, D.J., et al.: Overview of piezoelectric impedance-based health monitoring and path forward. Shock and Vibration Digest 35(6), 451–464 (2003)CrossRef
2.
go back to reference Giurgiutiu, V., Zagrai, A., Bao, J.J.: Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct. Health Monit. 1(1), 41–61 (2002)CrossRef Giurgiutiu, V., Zagrai, A., Bao, J.J.: Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct. Health Monit. 1(1), 41–61 (2002)CrossRef
3.
go back to reference Xu, Y.G., Liu, G.R.: A modified electro-mechanical impedance model of piezoelectric actuator-sensors for debonding detection of composite patches. J. Intell. Mater. Syst. Struct. 13(6), 389–396 (2002)CrossRef Xu, Y.G., Liu, G.R.: A modified electro-mechanical impedance model of piezoelectric actuator-sensors for debonding detection of composite patches. J. Intell. Mater. Syst. Struct. 13(6), 389–396 (2002)CrossRef
4.
go back to reference Taylor, S.G., Farinholt, K., Choi, M., Jeong, H., Jang, J., Park, G., Lee, J.-R., Todd, M.D.: Incipient crack detection in a composite wind turbine rotor blade. J. Intell. Mater. Syst. Struct. 25(5), 613–620 (2013)CrossRef Taylor, S.G., Farinholt, K., Choi, M., Jeong, H., Jang, J., Park, G., Lee, J.-R., Todd, M.D.: Incipient crack detection in a composite wind turbine rotor blade. J. Intell. Mater. Syst. Struct. 25(5), 613–620 (2013)CrossRef
5.
go back to reference Pitchford, C., Grisso, B.L., Inman, D.J.: Impedance-based structural health monitoring of wind turbine blades. In: Kundu, T. (ed.) SPIE Proceedings, pp. 508–518. SPIE, New York (2007) Pitchford, C., Grisso, B.L., Inman, D.J.: Impedance-based structural health monitoring of wind turbine blades. In: Kundu, T. (ed.) SPIE Proceedings, pp. 508–518. SPIE, New York (2007)
6.
go back to reference Zagrai, A., Doyle, D., Gigineishvili, V., Brown, J., Gardenier, H., Arritt, B.: Piezoelectric wafer active sensor structural health monitoring of space structures. J. Intell. Mater. Syst. Struct. 21(9), 921–940 (2010)CrossRef Zagrai, A., Doyle, D., Gigineishvili, V., Brown, J., Gardenier, H., Arritt, B.: Piezoelectric wafer active sensor structural health monitoring of space structures. J. Intell. Mater. Syst. Struct. 21(9), 921–940 (2010)CrossRef
7.
go back to reference Peairs, D.M., Tarazaga, P.A., Inman, D.J.: Frequency range selection for impedance-based structural health monitoring. J. Vib. Acoust. 129(6), 701–709 (2007)CrossRef Peairs, D.M., Tarazaga, P.A., Inman, D.J.: Frequency range selection for impedance-based structural health monitoring. J. Vib. Acoust. 129(6), 701–709 (2007)CrossRef
8.
go back to reference Albakri, M.I., Sturm, L.D., Williams, C.B., Tarazaga, P.A.: Impedance-based non-destructive evaluation of additively manufactured parts. Rapid Prototyp. J. 23(3), 589–601 (2017)CrossRef Albakri, M.I., Sturm, L.D., Williams, C.B., Tarazaga, P.A.: Impedance-based non-destructive evaluation of additively manufactured parts. Rapid Prototyp. J. 23(3), 589–601 (2017)CrossRef
9.
go back to reference Sturm, L., Albakri, M., Dr. Williams, C.B., Dr. Tarazaga, P.: In-situ detection of build defects in additive manufacturing via impedance-based monitoring. In: 2016 International Solid Freeform Fabrication Symposium. University of Texas, Austin (2016) Sturm, L., Albakri, M., Dr. Williams, C.B., Dr. Tarazaga, P.: In-situ detection of build defects in additive manufacturing via impedance-based monitoring. In: 2016 International Solid Freeform Fabrication Symposium. University of Texas, Austin (2016)
10.
go back to reference Tenney, C., Albakri, M.I., Kubalak, J., Sturm, L.D., Williams, C.B., Tarazaga, P.A.: Internal porosity detection in additively manufactured parts via electromechanical impedance measurements. In: Smart Materials, Adaptive Structures and Intelligent Systems, vol. 58257, p. V001T08A009. American Society of Mechanical Engineers, New York (2017) Tenney, C., Albakri, M.I., Kubalak, J., Sturm, L.D., Williams, C.B., Tarazaga, P.A.: Internal porosity detection in additively manufactured parts via electromechanical impedance measurements. In: Smart Materials, Adaptive Structures and Intelligent Systems, vol. 58257, p. V001T08A009. American Society of Mechanical Engineers, New York (2017)
11.
go back to reference Sangle, S., Tarazaga, P.: Electromechanical impedance-based part identification via linear projection. In: Smart Materials, Adaptive Structures and Intelligent Systems, vol. ! ! !, p. V001. American Society of Mechanical Engineers, New York (2023) Sangle, S., Tarazaga, P.: Electromechanical impedance-based part identification via linear projection. In: Smart Materials, Adaptive Structures and Intelligent Systems, vol. ! ! !, p. V001. American Society of Mechanical Engineers, New York (2023)
12.
go back to reference Davaria, S., Sriram Malladi, V.V.N., Avilovas, L., Dobson, P., Cammarano, A., Tarazaga, P.A.: Study on developing micro-scale artificial hair cells. In: Special Topics in Structural Dynamics & Experimental Techniques. Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019, vol. 5, pp. 95–99. Springer, Berlin (2020) Davaria, S., Sriram Malladi, V.V.N., Avilovas, L., Dobson, P., Cammarano, A., Tarazaga, P.A.: Study on developing micro-scale artificial hair cells. In: Special Topics in Structural Dynamics & Experimental Techniques. Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019, vol. 5, pp. 95–99. Springer, Berlin (2020)
13.
go back to reference Cookson, R.A., Bandyopadhyay, P.: A fiber-optic laser-doppler probe for vibration analysis of rotating machines. Journal of Engineering for Power 102(3), 607–612 (1980)CrossRef Cookson, R.A., Bandyopadhyay, P.: A fiber-optic laser-doppler probe for vibration analysis of rotating machines. Journal of Engineering for Power 102(3), 607–612 (1980)CrossRef
14.
go back to reference Halliwell, N.A., Pullen, L., Baker, J.: Diesel Engine Health: Laser Diagnostics. JSTOR, Warrendale (1983) Halliwell, N.A., Pullen, L., Baker, J.: Diesel Engine Health: Laser Diagnostics. JSTOR, Warrendale (1983)
15.
go back to reference Chen, Y., Griffith, D.T.: Experimental and numerical investigation of the structural dynamic characteristics for both surfaces of a wind turbine blade. J. Vib. Control. 29(15–16), 3461–3474 (2023)CrossRef Chen, Y., Griffith, D.T.: Experimental and numerical investigation of the structural dynamic characteristics for both surfaces of a wind turbine blade. J. Vib. Control. 29(15–16), 3461–3474 (2023)CrossRef
16.
go back to reference Rothberg, S.J., Allen, M.S., Castellini, P., Di Maio, D., Dirckx, J.J.J., Ewins, D.J., Halkon, B.J., Muyshondt, P., Paone, N., Ryan, T., Steger, H., Tomasini, E.P., Vanlanduit, S., Vignola, J.F.: An international review of laser doppler vibrometry: Making light work of vibration measurement. Opt. Lasers Eng. 99, 11–22 (2017)CrossRef Rothberg, S.J., Allen, M.S., Castellini, P., Di Maio, D., Dirckx, J.J.J., Ewins, D.J., Halkon, B.J., Muyshondt, P., Paone, N., Ryan, T., Steger, H., Tomasini, E.P., Vanlanduit, S., Vignola, J.F.: An international review of laser doppler vibrometry: Making light work of vibration measurement. Opt. Lasers Eng. 99, 11–22 (2017)CrossRef
17.
go back to reference Liang, C., Sun, F.P., Rogers, C.A.: Coupled electro-mechanical analysis of adaptive material systems—determination of the actuator power consumption and system energy transfer. J. Intell. Mater. Syst. Struct. 5(1), 12–20 (1994)CrossRef Liang, C., Sun, F.P., Rogers, C.A.: Coupled electro-mechanical analysis of adaptive material systems—determination of the actuator power consumption and system energy transfer. J. Intell. Mater. Syst. Struct. 5(1), 12–20 (1994)CrossRef
Metadata
Title
Understanding High-Frequency Modes in Electromechanical Impedance Measurement Using Noncontact Vibration Testing
Authors
Sourabh Sangle
William C. Rogers
Mohammad I. Albakri
Pablo A. Tarazaga
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-68142-4_10