Skip to main content
Top

2025 | OriginalPaper | Chapter

2. Understanding Sloshing as a Complex Asymptotically Reduced Dynamical System

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter presents a detailed examination of sloshing dynamics, focusing on the complex interactions between liquid motion and container movements. It begins by discussing the fundamental principles of sloshing, emphasizing how liquid sloshing in partially filled containers can generate significant hydrodynamic forces and moments, posing risks to structural integrity. The text delves into the mathematical modeling of sloshing, utilizing the Bateman-Luke variational principle and multimodal modeling techniques to derive the Miles-Lukovsky-type modal equations. These equations are crucial for understanding the resonant behaviors and stability of sloshing systems. The chapter also explores the linear and nonlinear theories of sloshing, including the Duffing equation and single-dominant modal theories, which are essential for predicting and controlling sloshing phenomena. Additionally, it covers the application of these theories to various container shapes and motion types, providing insights into the practical challenges and solutions related to sloshing in real-world scenarios. The chapter concludes with a discussion on the implications of sloshing for structural design and control systems, highlighting the importance of accurate modeling and analysis in ensuring the safety and efficiency of liquid-containing structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Literature
go back to reference Ahmed, S. E., Pawar, S., San, O., Rasheed, A., Iliescu, T., & Noack, D. (2021). On closures for reduced order models—a spectrum of first-principle to machine–learned avenues. Physics of Fluids, 33(9), Article 091301. Ahmed, S. E., Pawar, S., San, O., Rasheed, A., Iliescu, T., & Noack, D. (2021). On closures for reduced order models—a spectrum of first-principle to machine–learned avenues. Physics of Fluids, 33(9), Article 091301.
go back to reference Antuono, M., Bouscasse, B., Colagrossi, A., & Lugni, C. (2012). Two-dimensional modal method for shallow-water sloshing in rectangular basins. Journal of Fluid Mechanics, 700, 419–440. Antuono, M., Bouscasse, B., Colagrossi, A., & Lugni, C. (2012). Two-dimensional modal method for shallow-water sloshing in rectangular basins. Journal of Fluid Mechanics, 700, 419–440.
go back to reference Barnyak, M. Y., & Barnyak, O. M. (1996). Normal oscillations of viscous liquid in a horizontal channel. International Applied Mechanics, 32(7), 56–566. Barnyak, M. Y., & Barnyak, O. M. (1996). Normal oscillations of viscous liquid in a horizontal channel. International Applied Mechanics, 32(7), 56–566.
go back to reference Bateman, H. (1944). Partial differential equations of mathematical physics. Dover Publications. Bateman, H. (1944). Partial differential equations of mathematical physics. Dover Publications.
go back to reference Bäuerlein, B., & Avila, K. (2021). Phase lag predicts nonlinear response maxima in liquid-sloshing experiments. Journal of Fluid Mechanics, 925(A22), 1–29. Bäuerlein, B., & Avila, K. (2021). Phase lag predicts nonlinear response maxima in liquid-sloshing experiments. Journal of Fluid Mechanics, 925(A22), 1–29.
go back to reference Bongarzone, A., Guido, M., & Gallaire, F. (2022). An amplitude equation modelling the double-crest swirling in orbital-shaken cylindrical containers. Journal of Fluid Mechanics, 943(A28), 1–35. Bongarzone, A., Guido, M., & Gallaire, F. (2022). An amplitude equation modelling the double-crest swirling in orbital-shaken cylindrical containers. Journal of Fluid Mechanics, 943(A28), 1–35.
go back to reference Bouvard, J., Herreman, W., & Moisy, F. (2017). Mean mass transport in an orbitally shaken cylindrical container. Physical Review Fluids, 2, Paper No 084801. Bouvard, J., Herreman, W., & Moisy, F. (2017). Mean mass transport in an orbitally shaken cylindrical container. Physical Review Fluids, 2, Paper No 084801.
go back to reference Chester, W. (1968). Resonant oscillation of water waves. I. Theory. Proceedings of Royal Society, London,308, 5–22. Chester, W. (1968). Resonant oscillation of water waves. I. Theory. Proceedings of Royal Society, London,308, 5–22.
go back to reference Chester, W., & Bones, J. A. (1968). Resonant oscillation of water waves. II. Experiment. Proceedings of Royal Society, London, 306, 23–30. Chester, W., & Bones, J. A. (1968). Resonant oscillation of water waves. II. Experiment. Proceedings of Royal Society, London, 306, 23–30.
go back to reference Faltinsen, O. M. (1974). A nonlinear theory of sloshing in rectangular tanks. Journal of Ship Research, 18, 224–241. Faltinsen, O. M. (1974). A nonlinear theory of sloshing in rectangular tanks. Journal of Ship Research, 18, 224–241.
go back to reference Faltinsen, O. M., & Timokha, A. N. (2001). Adaptive multimodal approach to nonlinear sloshing in a rectangular tank. Journal of Fluid Mechanics, 432, 167–200. Faltinsen, O. M., & Timokha, A. N. (2001). Adaptive multimodal approach to nonlinear sloshing in a rectangular tank. Journal of Fluid Mechanics, 432, 167–200.
go back to reference Faltinsen, O. M., & Timokha, A. N. (2002). Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. Journal of Fluid Mechanics, 470, 319–357. Faltinsen, O. M., & Timokha, A. N. (2002). Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. Journal of Fluid Mechanics, 470, 319–357.
go back to reference Faltinsen, O. M., & Timokha, A. N. (2009). Sloshing. Cambridge University Press. Faltinsen, O. M., & Timokha, A. N. (2009). Sloshing. Cambridge University Press.
go back to reference Faltinsen, O. M., & Timokha, A. N. (2019). An inviscid analysis of the prandtl azimuthal mass transport during swirl-type sloshing. Journal of Fluid Mechanics, 865, 884–903. Faltinsen, O. M., & Timokha, A. N. (2019). An inviscid analysis of the prandtl azimuthal mass transport during swirl-type sloshing. Journal of Fluid Mechanics, 865, 884–903.
go back to reference Faltinsen, O. M., & Timokha, A. N. (2021). Coupling between resonant sloshing and lateral motions of a two-dimensional rectangular tank. Journal of Fluid Mechanics, 916(A60), 1–41. Faltinsen, O. M., & Timokha, A. N. (2021). Coupling between resonant sloshing and lateral motions of a two-dimensional rectangular tank. Journal of Fluid Mechanics, 916(A60), 1–41.
go back to reference Faltinsen, O. M., Firoozkoohi, R., & Timokha, A. N. (2011a). Steady-state liquid sloshing in a rectangular tank with a slat-type screen in the middle: quasi-linear modal analysis and experiments. Physics of Fluids, 23, Art. No 042101. Faltinsen, O. M., Firoozkoohi, R., & Timokha, A. N. (2011a). Steady-state liquid sloshing in a rectangular tank with a slat-type screen in the middle: quasi-linear modal analysis and experiments. Physics of Fluids, 23, Art. No 042101.
go back to reference Faltinsen, O. M., Firoozkoohi, R., & Timokha, A. N. (2011b). Steady-state liquid sloshing in a rectangular tank with a slat-type screen in the middle: quasi-linear modal analysis and experiments. Physics of Fluids, 23, Art. No 042101. Faltinsen, O. M., Firoozkoohi, R., & Timokha, A. N. (2011b). Steady-state liquid sloshing in a rectangular tank with a slat-type screen in the middle: quasi-linear modal analysis and experiments. Physics of Fluids, 23, Art. No 042101.
go back to reference Faltinsen, O. M., Lagodzinskyi, O., & Timokha, A. N. (2020). Resonant three-dimensional nonlinear sloshing in a square base basin. Part 5. Three-dimensional non-parametric tank forcing. Journal of Fluid Mechanics, 894(A10), 1–42 Faltinsen, O. M., Lagodzinskyi, O., & Timokha, A. N. (2020). Resonant three-dimensional nonlinear sloshing in a square base basin. Part 5. Three-dimensional non-parametric tank forcing. Journal of Fluid Mechanics, 894(A10), 1–42
go back to reference Faltinsen, O. M., Rognebakke, O. F., & Timokha, A. N. (2003). Resonant three-dimensional nonlinear sloshing in a square base basin. Journal of Fluid Mechanics, 487, 1–42. Faltinsen, O. M., Rognebakke, O. F., & Timokha, A. N. (2003). Resonant three-dimensional nonlinear sloshing in a square base basin. Journal of Fluid Mechanics, 487, 1–42.
go back to reference Faltinsen, O. M., Rognebakke, O. F., Lukovsky, I. A., & Timokha, A. N. (2000). Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. Journal of Fluid Mechanics, 407, 201–234. Faltinsen, O. M., Rognebakke, O. F., Lukovsky, I. A., & Timokha, A. N. (2000). Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. Journal of Fluid Mechanics, 407, 201–234.
go back to reference Feschenko, S. F., Lukovsky, I. A., Rabinovich, B. I., & Dokuchaev, L. V. (1969). Methods of determining the added liquid mass in mobile cavities. Naukova Dumka (in Russian). Feschenko, S. F., Lukovsky, I. A., Rabinovich, B. I., & Dokuchaev, L. V. (1969). Methods of determining the added liquid mass in mobile cavities. Naukova Dumka (in Russian).
go back to reference Fultz, D. (1962). An experimental note on finite-amplitude standing gravity waves. Journal of Fluid Mechanics, 13(2), 192–212. Fultz, D. (1962). An experimental note on finite-amplitude standing gravity waves. Journal of Fluid Mechanics, 13(2), 192–212.
go back to reference Gavrilyuk, I., Hermann, M., Lukovsky, I., Solodun, O., & Timokha, A. (2012). Multimodal method for linear liquid sloshing in a rigid tapered conical tank. Engineering Computations, 29(2), 198–220. Gavrilyuk, I., Hermann, M., Lukovsky, I., Solodun, O., & Timokha, A. (2012). Multimodal method for linear liquid sloshing in a rigid tapered conical tank. Engineering Computations, 29(2), 198–220.
go back to reference Gavrilyuk, I., Hermann, M., Lukovsky, I., Solodun, O., & Timokha, A. (2013). Weakly-nonlinear sloshing in a truncated circular conical tank. Fluid Dynamics Research, 45(Paper ID 055512), 1–30. Gavrilyuk, I., Hermann, M., Lukovsky, I., Solodun, O., & Timokha, A. (2013). Weakly-nonlinear sloshing in a truncated circular conical tank. Fluid Dynamics Research, 45(Paper ID 055512), 1–30.
go back to reference Hargneaves, R. (1908). A pressure-integral as kinetic potential. Philosophical Magazine, 16, 436–444. Hargneaves, R. (1908). A pressure-integral as kinetic potential. Philosophical Magazine, 16, 436–444.
go back to reference Hermann, M., & Timokha, A. (2008). Modal modelling of the nonlinear resonant fluid sloshing in a rectangular tank II: Secondary resonance. Mathematical Models and Methods in Applied Sciences, 18(11), 1845–1867. Hermann, M., & Timokha, A. (2008). Modal modelling of the nonlinear resonant fluid sloshing in a rectangular tank II: Secondary resonance. Mathematical Models and Methods in Applied Sciences, 18(11), 1845–1867.
go back to reference Hopfinger, E. J., & Baumbach, V. (2009). Liquid sloshing in cylindrical fuel tanks. Progress in Propulsion Physics, 1, 279–292. Hopfinger, E. J., & Baumbach, V. (2009). Liquid sloshing in cylindrical fuel tanks. Progress in Propulsion Physics, 1, 279–292.
go back to reference Hutton, R. E. (1964). Fluid-particle motion during rotary sloshing. Journal of Applied Mechanics, Transactions ASME, 31(1), 145–153. Hutton, R. E. (1964). Fluid-particle motion during rotary sloshing. Journal of Applied Mechanics, Transactions ASME, 31(1), 145–153.
go back to reference Ibrahim, R. (2005). Liquid sloshing dynamics. Cambridge University Press. Ibrahim, R. (2005). Liquid sloshing dynamics. Cambridge University Press.
go back to reference Ibrahim, R. A. (2015). Recent advances in physics of fluid parametric sloshing and related problems. Journal of Fluids Engineering, 137(ID 090801-1), 1–52. Ibrahim, R. A. (2015). Recent advances in physics of fluid parametric sloshing and related problems. Journal of Fluids Engineering, 137(ID 090801-1), 1–52.
go back to reference Ibrahim, R. A. (2020). Assessment of breaking waves and liquid sloshing impact. Nonlinear Dynamics, 100, 1837–1925. Ibrahim, R. A. (2020). Assessment of breaking waves and liquid sloshing impact. Nonlinear Dynamics, 100, 1837–1925.
go back to reference Ibrahim, R. A., Pilipchuk, V. N., & Ikeda, T. (2001). Recent advances in liquid sloshing dynamics. Applied Mechanics Reviews, 54(2), 133–199. Ibrahim, R. A., Pilipchuk, V. N., & Ikeda, T. (2001). Recent advances in liquid sloshing dynamics. Applied Mechanics Reviews, 54(2), 133–199.
go back to reference Ikeda, T., Ibrahim, R. A., Harata, Y., & Kuriyama, T. (2012). Nonlinear liquid sloshing in a square tank subjected to obliquely horizontal excitation. Journal of Fluid Mechanics, 700, 304–328. Ikeda, T., Ibrahim, R. A., Harata, Y., & Kuriyama, T. (2012). Nonlinear liquid sloshing in a square tank subjected to obliquely horizontal excitation. Journal of Fluid Mechanics, 700, 304–328.
go back to reference Keulegan, G. (1959). Energy dissipation in standing waves in rectangular basins. Journal of Fluid Mechanics, 6(1), 33–50. Keulegan, G. (1959). Energy dissipation in standing waves in rectangular basins. Journal of Fluid Mechanics, 6(1), 33–50.
go back to reference Krein, S. G. (1964). Oscillations of a viscous fluid in a container. Doklady Akademii Nauk SSSR, 159, 262–265. in Russian. Krein, S. G. (1964). Oscillations of a viscous fluid in a container. Doklady Akademii Nauk SSSR, 159, 262–265. in Russian.
go back to reference La Rocca, M., Scortino, M., & Boniforti, M. A. (2000). A fully nonlinear model for sloshing in a rotating container. Fluid Dynamics Research, 27, 225–229. La Rocca, M., Scortino, M., & Boniforti, M. A. (2000). A fully nonlinear model for sloshing in a rotating container. Fluid Dynamics Research, 27, 225–229.
go back to reference Love, J. S., & Tait, M. J. (2010). Nonlinear simulation of a tuned liquid damper with damping screens using a modal expansion technique. Journal of Fluids and Structures, 26(7–8), 1058–1077. Love, J. S., & Tait, M. J. (2010). Nonlinear simulation of a tuned liquid damper with damping screens using a modal expansion technique. Journal of Fluids and Structures, 26(7–8), 1058–1077.
go back to reference Love, J. S., McNamara, K. P., Tait, M. J., & Haskett, T. C. (2022). Nonlinear multimodal model for an annular tuned sloshing damper equipped with damping screens. Journal of Vibration and control, 29(5–6), 1307–1322. Love, J. S., McNamara, K. P., Tait, M. J., & Haskett, T. C. (2022). Nonlinear multimodal model for an annular tuned sloshing damper equipped with damping screens. Journal of Vibration and control, 29(5–6), 1307–1322.
go back to reference Luke, J. G. (1967). A variational principle for a fluid with a free surface. Journal of Fluid Mechanics, 27, 395–397. Luke, J. G. (1967). A variational principle for a fluid with a free surface. Journal of Fluid Mechanics, 27, 395–397.
go back to reference Lukovsky, I. A. (1975). Nonlinear sloshing in tanks of complex geometrical shape. Naukova Dumka. in Russian. Lukovsky, I. A. (1975). Nonlinear sloshing in tanks of complex geometrical shape. Naukova Dumka. in Russian.
go back to reference Lukovsky, I. A. (1990). Introduction to nonlinear dynamics of rigid bodies with the cavities partially filled by a fluid. Naukova Dumka. in Russian. Lukovsky, I. A. (1990). Introduction to nonlinear dynamics of rigid bodies with the cavities partially filled by a fluid. Naukova Dumka. in Russian.
go back to reference Lukovsky, I. A. (2015). Nonlinear dynamics: Mathematical models for rigid bodies with a liquid. De Gruyter. Lukovsky, I. A. (2015). Nonlinear dynamics: Mathematical models for rigid bodies with a liquid. De Gruyter.
go back to reference Lukovsky, I., & Timokha, A. (2017). Multimodal method in sloshing. Journal of Mathematical Sciences, 220(3), 239–253. Lukovsky, I., & Timokha, A. (2017). Multimodal method in sloshing. Journal of Mathematical Sciences, 220(3), 239–253.
go back to reference McIver, P., & Newman, J. N. (2003). Trapping structures in the three-dimensional water-wave problem. Journal of Fluid Mechanics, 484, 283–301. McIver, P., & Newman, J. N. (2003). Trapping structures in the three-dimensional water-wave problem. Journal of Fluid Mechanics, 484, 283–301.
go back to reference Miles, J. W. & Henderson, D. M. (1998). A note on interior vs. boundary-layer damping of surface waves in a cicular cylinder. Journal of Fluid Mechanics, 364, 319–323. Miles, J. W. & Henderson, D. M. (1998). A note on interior vs. boundary-layer damping of surface waves in a cicular cylinder. Journal of Fluid Mechanics, 364, 319–323.
go back to reference Miles, J. W. (1967). Surface-wave damping in closed basins. Proceedings of Royal Society London, A297, 459–475. Miles, J. W. (1967). Surface-wave damping in closed basins. Proceedings of Royal Society London, A297, 459–475.
go back to reference Miliaiev, A., & Timokha, A. (2023). Viscous damping of steady-state resonant sloshing in a clean rectangular tank. Journal of Fluid Mechanics, 965(R1), 1–11. Miliaiev, A., & Timokha, A. (2023). Viscous damping of steady-state resonant sloshing in a clean rectangular tank. Journal of Fluid Mechanics, 965(R1), 1–11.
go back to reference Moiseev, N. N. (1958). On the theory of nonlinear vibrations of a liquid of finite volume. Journal of Applied Mathematics and Mechanics, 22(5), 860–872. Moiseev, N. N. (1958). On the theory of nonlinear vibrations of a liquid of finite volume. Journal of Applied Mathematics and Mechanics, 22(5), 860–872.
go back to reference Moore, R. E., & Perko, L. M. (1964). Inviscid fluid flow in an accelerating cylindrical container. Journal of Fluid Mechanics, 22, 305–320. Moore, R. E., & Perko, L. M. (1964). Inviscid fluid flow in an accelerating cylindrical container. Journal of Fluid Mechanics, 22, 305–320.
go back to reference Ockendon, J. R., & Ockendon, H. (1973). Resonant surface waves. Journal of Fluid Mechanics, 59, 397–413. Ockendon, J. R., & Ockendon, H. (1973). Resonant surface waves. Journal of Fluid Mechanics, 59, 397–413.
go back to reference Ockendon, H., Ockendon, J. H., & Johnson, A. D. (1986). Resonant sloshing in shallow water. Journal of Fluid Mechanics, 167, 465–479. Ockendon, H., Ockendon, J. H., & Johnson, A. D. (1986). Resonant sloshing in shallow water. Journal of Fluid Mechanics, 167, 465–479.
go back to reference Ockendon, J. R., Ockendon, H., & Waterhouse, D. D. (1996). Multi-mode resonance in fluids. Journal of Fluid Mechanics, 315, 317–344. Ockendon, J. R., Ockendon, H., & Waterhouse, D. D. (1996). Multi-mode resonance in fluids. Journal of Fluid Mechanics, 315, 317–344.
go back to reference Olsen, H., & Johnsen, K. R. (1975). Nonlinear sloshing in rectangular tanks. a pilot study on the applicability of analytical models. Technical Report Report. 74–72-S (Vol. 2). Det Norske Veritas. Olsen, H., & Johnsen, K. R. (1975). Nonlinear sloshing in rectangular tanks. a pilot study on the applicability of analytical models. Technical Report Report. 74–72-S (Vol. 2). Det Norske Veritas.
go back to reference Perko, L. M. (1969). Large-amplitude motions of liquid-vapour interface in an accelerating container. Journal of Fluid Mechanics, 35, 77–96. Perko, L. M. (1969). Large-amplitude motions of liquid-vapour interface in an accelerating container. Journal of Fluid Mechanics, 35, 77–96.
go back to reference Prandtl, L. (1949). Erzeugung von Zirkulation beim Schütteln von Gefässen. ZAMM, 29(1/2), 8–9. Prandtl, L. (1949). Erzeugung von Zirkulation beim Schütteln von Gefässen. ZAMM, 29(1/2), 8–9.
go back to reference Raynovskyy, I., & Timokha, A. (2018). Damped steady-state resonant sloshing in a circular base container. Fluid Dynamics Research, 50, Article ID 045502. Raynovskyy, I., & Timokha, A. (2018). Damped steady-state resonant sloshing in a circular base container. Fluid Dynamics Research, 50, Article ID 045502.
go back to reference Rebouillat, S., & Liksonov, D. (2010). Fluid-structure interaction in partially filled liquid containers: A comparative review of numerical approaches. Computers and Fluids, 39, 739–746. Rebouillat, S., & Liksonov, D. (2010). Fluid-structure interaction in partially filled liquid containers: A comparative review of numerical approaches. Computers and Fluids, 39, 739–746.
go back to reference Reclari, M. (2013). Hydrodynamics of orbital shaken bioreactors. Thesis no 5759 (2013), Ècole Polytechnique Federale de Lausanne. Reclari, M. (2013). Hydrodynamics of orbital shaken bioreactors. Thesis no 5759 (2013), Ècole Polytechnique Federale de Lausanne.
go back to reference Reclari, M., Dreyer, M., Tissot, S., Obreschkow, D., Wurm, F. M., & Farhat, M. (2014). Surface wave dynamics in orbital shaken cylindrical containers. Physics of Fluids, 26, Paper ID 052104. Reclari, M., Dreyer, M., Tissot, S., Obreschkow, D., Wurm, F. M., & Farhat, M. (2014). Surface wave dynamics in orbital shaken cylindrical containers. Physics of Fluids, 26, Paper ID 052104.
go back to reference Royon-Lebeaud, A., Hopfinger, E. J., & Cartellier, A. (2007). Liquid sloshing and wave breaking in circular and square-base cylindrical containers. Journal of Fluid Mechanics, 577, 467–494. Royon-Lebeaud, A., Hopfinger, E. J., & Cartellier, A. (2007). Liquid sloshing and wave breaking in circular and square-base cylindrical containers. Journal of Fluid Mechanics, 577, 467–494.
go back to reference Waterhouse, D. D. (1994). Resonant sloshing near a critical depth. Journal of Fluid Mechanics, 281, 313–318. Waterhouse, D. D. (1994). Resonant sloshing near a critical depth. Journal of Fluid Mechanics, 281, 313–318.
Metadata
Title
Understanding Sloshing as a Complex Asymptotically Reduced Dynamical System
Author
Alexander N. Timokha
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-78764-5_2

Premium Partners