Skip to main content
Top

2025 | OriginalPaper | Chapter

Understanding SPARQL Queries: Are We Already There? Multilingual Natural Language Generation Based on SPARQL Queries and Large Language Models

Authors : Aleksandr Perevalov, Aleksandr Gashkov, Maria Eltsova, Andreas Both

Published in: The Semantic Web – ISWC 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

SPARQL is a standard query language for RDF data. Interpreting SPARQL queries might be a challenge, in particular, while being not familiar with the technical specifications of SPARQL or the meaning of the thing identified by a resource. In our study, we take an initial step toward employing Large Language Models to verbalize SPARQL queries, i.e., convert them to natural language. While other research often focused only on English verbalizations, we also implemented the transformation into German and Russian textual representations. The experimental framework leverages a combination of proprietary and open-source models, with enhancements achieved through further fine-tuning these models. Our methodology is assessed using the well-known question answering datasets QALD-9-plus and QALD-10, focusing on the aforementioned three languages: English, German, and Russian. To analyze performance quality, we employ metrics for machine translation alongside a survey for human evaluation. Although we encountered specific error types such as question over-specification, linguistic discrepancies, and semantic mismatches, the findings of our research indicate that Large Language Models are well-suited for the task of translating SPARQL queries into natural language, s.t., the semantics of SPARQL queries is represented in the mother tongue of the users.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Goldstein, J., Lavie, A., Lin, C.Y., Voss, C. (eds.) Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72. Association for Computational Linguistics, Ann Arbor, Michigan (2005). https://aclanthology.org/W05-0909 Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Goldstein, J., Lavie, A., Lin, C.Y., Voss, C. (eds.) Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72. Association for Computational Linguistics, Ann Arbor, Michigan (2005). https://​aclanthology.​org/​W05-0909
4.
go back to reference Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary – a methodology for vocabulary-driven open question answering systems. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 625–641. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_38CrossRef Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary – a methodology for vocabulary-driven open question answering systems. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 625–641. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-34129-3_​38CrossRef
5.
go back to reference Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020) Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)
9.
go back to reference Lecorvé, G., Veyret, M., Brabant, Q., Rojas Barahona, L.M.: SPARQL-to-text question generation for knowledge-based conversational applications. In: He, Y., Ji, H., Li, S., Liu, Y., Chang, C.H. (eds.) Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 131–147. Association for Computational Linguistics, Online only (2022). https://aclanthology.org/2022.aacl-main.11 Lecorvé, G., Veyret, M., Brabant, Q., Rojas Barahona, L.M.: SPARQL-to-text question generation for knowledge-based conversational applications. In: He, Y., Ji, H., Li, S., Liu, Y., Chang, C.H. (eds.) Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 131–147. Association for Computational Linguistics, Online only (2022). https://​aclanthology.​org/​2022.​aacl-main.​11
10.
go back to reference Levenshtein, V.I., et al.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet Physics Doklady, vol. 10, pp. 707–710. Soviet Union (1966) Levenshtein, V.I., et al.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet Physics Doklady, vol. 10, pp. 707–710. Soviet Union (1966)
12.
go back to reference Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81 (2004) Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81 (2004)
13.
go back to reference Loginova, E., Varanasi, S., Neumann, G.: Towards end-to-end multilingual question answering. Inf. Syst. Front. 23(1), 227–241 (2021)CrossRef Loginova, E., Varanasi, S., Neumann, G.: Towards end-to-end multilingual question answering. Inf. Syst. Front. 23(1), 227–241 (2021)CrossRef
17.
go back to reference Ngonga Ngomo, A.C., Bühmann, L., Unger, C., Lehmann, J., Gerber, D.: Sorry, I don’t speak SPARQL: translating SPARQL queries into natural language. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 977–988 (2013) Ngonga Ngomo, A.C., Bühmann, L., Unger, C., Lehmann, J., Gerber, D.: Sorry, I don’t speak SPARQL: translating SPARQL queries into natural language. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 977–988 (2013)
19.
go back to reference Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318 (2002) Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318 (2002)
20.
go back to reference Perevalov, A., Both, A., Diefenbach, D., Ngonga Ngomo, A.C.: Can machine translation be a reasonable alternative for multilingual question answering systems over knowledge graphs? In: Proceedings of the ACM Web Conference 2022, pp. 977–986 (2022). https://doi.org/10.1145/3485447.3511940 Perevalov, A., Both, A., Diefenbach, D., Ngonga Ngomo, A.C.: Can machine translation be a reasonable alternative for multilingual question answering systems over knowledge graphs? In: Proceedings of the ACM Web Conference 2022, pp. 977–986 (2022). https://​doi.​org/​10.​1145/​3485447.​3511940
23.
go back to reference Perevalov, A., Yan, X., Kovriguina, L., Jiang, L., Both, A., Usbeck, R.: Knowledge graph question answering leaderboard: a community resource to prevent a replication crisis. In: Calzolari, N., et al. (eds.) Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 2998–3007. European Language Resources Association, Marseille, France (2022). https://aclanthology.org/2022.lrec-1.321 Perevalov, A., Yan, X., Kovriguina, L., Jiang, L., Both, A., Usbeck, R.: Knowledge graph question answering leaderboard: a community resource to prevent a replication crisis. In: Calzolari, N., et al. (eds.) Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 2998–3007. European Language Resources Association, Marseille, France (2022). https://​aclanthology.​org/​2022.​lrec-1.​321
27.
go back to reference Usbeck, R., Gusmita, R.H., Ngomo, A.C.N., Saleem, M.: 9th challenge on question answering over linked data (QALD-9). In: Semdeep/NLIWoD@ISWC (2018) Usbeck, R., Gusmita, R.H., Ngomo, A.C.N., Saleem, M.: 9th challenge on question answering over linked data (QALD-9). In: Semdeep/NLIWoD@ISWC (2018)
30.
31.
go back to reference Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: evaluating text generation with Bert. arXiv preprint arXiv:1904.09675 (2019) Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: evaluating text generation with Bert. arXiv preprint arXiv:​1904.​09675 (2019)
Metadata
Title
Understanding SPARQL Queries: Are We Already There? Multilingual Natural Language Generation Based on SPARQL Queries and Large Language Models
Authors
Aleksandr Perevalov
Aleksandr Gashkov
Maria Eltsova
Andreas Both
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-77850-6_10

Premium Partner