Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

15-09-2016 | Original Paper | Issue 6-7/2017

Topics in Catalysis 6-7/2017

Understanding Structure and Stability of Monoclinic Zirconia Surfaces from First-Principles Calculations

Journal:
Topics in Catalysis > Issue 6-7/2017
Authors:
Andrey S. Bazhenov, Karoliina Honkala
Important notes

Electronic supplementary material

The online version of this article (doi:10.​1007/​s11244-016-0701-0) contains supplementary material, which is available to authorized users.

Abstract

Under the water-rich pre-treatment and/or reaction conditions, structure and chemistry of the monoclinic zirconia surfaces are strongly influenced by oxygen vacancies and incorporated water. Here, we report a combined first-principles and atomistic thermodynamics study on the structure and stability of selected surfaces of the monoclinic zirconia. Our results indicate that among the studied surfaces, the most stable (\({\overline{1}}11\)) surface is the least vulnerable towards oxygen vacancies in contrast to the less stable (011) and (\({\overline{1}}01\)) surfaces, where formation of oxygen vacancies is energetically more favorable. Furthermore, we present a vigorous, systematic screening of water incorporation onto the studied surfaces. We observe that the greatest stabilization of the surfaces is achieved when a part of the adsorbed water molecules is dissociated. Nevertheless, the importance of water dissociation for achieving the greatest stabilization is high for the less stable (011) and (\({\overline{1}}01\)) surfaces, while completely hydrated (\({\overline{1}}11\)) surface is stabilized equally regardless of the water dissociation state. Analysis of the constructed phase diagrams reveals that the (\({\overline{1}}11\)) surface remains preferably clean and the (011) and (\({\overline{1}}01\)) surfaces have dissociated water at low coverage under the reactive conditions of \(T = 600\)–900 K and \(p({\mathrm {H}}_{2}{\mathrm {O}}) < 1\) bar. Upon temperature decrease and/or pressure increase, all studied surfaces gradually uptake water until fully hydrated. All in all, our findings complement and broaden the existing picture of the structure and stability of the monoclinic zirconia surfaces under the pre-treatment and/or reaction conditions, enabling rationalization of the potential roles of zirconia as a heterogeneous support and a catalyst component.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Supplementary Material
Available only for authorised users
Literature
About this article

Other articles of this Issue 6-7/2017

Topics in Catalysis 6-7/2017 Go to the issue

Preface

Preface

Premium Partners

    Image Credits