Skip to main content
Top
Published in: Topics in Catalysis 6-7/2017

15-09-2016 | Original Paper

Understanding Structure and Stability of Monoclinic Zirconia Surfaces from First-Principles Calculations

Authors: Andrey S. Bazhenov, Karoliina Honkala

Published in: Topics in Catalysis | Issue 6-7/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Under the water-rich pre-treatment and/or reaction conditions, structure and chemistry of the monoclinic zirconia surfaces are strongly influenced by oxygen vacancies and incorporated water. Here, we report a combined first-principles and atomistic thermodynamics study on the structure and stability of selected surfaces of the monoclinic zirconia. Our results indicate that among the studied surfaces, the most stable (\({\overline{1}}11\)) surface is the least vulnerable towards oxygen vacancies in contrast to the less stable (011) and (\({\overline{1}}01\)) surfaces, where formation of oxygen vacancies is energetically more favorable. Furthermore, we present a vigorous, systematic screening of water incorporation onto the studied surfaces. We observe that the greatest stabilization of the surfaces is achieved when a part of the adsorbed water molecules is dissociated. Nevertheless, the importance of water dissociation for achieving the greatest stabilization is high for the less stable (011) and (\({\overline{1}}01\)) surfaces, while completely hydrated (\({\overline{1}}11\)) surface is stabilized equally regardless of the water dissociation state. Analysis of the constructed phase diagrams reveals that the (\({\overline{1}}11\)) surface remains preferably clean and the (011) and (\({\overline{1}}01\)) surfaces have dissociated water at low coverage under the reactive conditions of \(T = 600\)–900 K and \(p({\mathrm {H}}_{2}{\mathrm {O}}) < 1\) bar. Upon temperature decrease and/or pressure increase, all studied surfaces gradually uptake water until fully hydrated. All in all, our findings complement and broaden the existing picture of the structure and stability of the monoclinic zirconia surfaces under the pre-treatment and/or reaction conditions, enabling rationalization of the potential roles of zirconia as a heterogeneous support and a catalyst component.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Chauke HR, Murovhi P, Ngoepe PE, de Leeuw NH, Grau-Crespo R (2010) Electronic structure and redox properties of the Ti-doped zirconia (111) surface. J Phys Chem C 114:15403–15409. doi:10.1021/jp103181q CrossRef Chauke HR, Murovhi P, Ngoepe PE, de Leeuw NH, Grau-Crespo R (2010) Electronic structure and redox properties of the Ti-doped zirconia (111) surface. J Phys Chem C 114:15403–15409. doi:10.​1021/​jp103181q CrossRef
3.
go back to reference Chen HT, Chang JG (2010) Oxygen vacancy formation and migration in Ce\(_{1-x}\)Zr\(_{x}\)O\(_{2}\) catalyst: a DFT+U calculation. J Chem Phys 132(214):702. doi:10.1063/1.3429314 Chen HT, Chang JG (2010) Oxygen vacancy formation and migration in Ce\(_{1-x}\)Zr\(_{x}\)O\(_{2}\) catalyst: a DFT+U calculation. J Chem Phys 132(214):702. doi:10.​1063/​1.​3429314
4.
go back to reference Contreras JL, Salmones J, Colín-Luna JA, Nuño L, Quintana B, Córdova I, Zeifert B, Tapia C, Fuentes GA (2014) Catalysts for H\(_{2}\) production using the ethanol steam reforming (a review). Int J Hydrog Energy 39:18835–18853. doi:10.1016/j.ijhydene.2014.08.072 CrossRef Contreras JL, Salmones J, Colín-Luna JA, Nuño L, Quintana B, Córdova I, Zeifert B, Tapia C, Fuentes GA (2014) Catalysts for H\(_{2}\) production using the ethanol steam reforming (a review). Int J Hydrog Energy 39:18835–18853. doi:10.​1016/​j.​ijhydene.​2014.​08.​072 CrossRef
6.
go back to reference Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys Condens Matter 22(253):202. doi:10.1088/0953-8984/22/25/253202 Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys Condens Matter 22(253):202. doi:10.​1088/​0953-8984/​22/​25/​253202
7.
14.
go back to reference Hoang TMC, Rao NK, Lefferts L, Seshan K (2015) Investigation of Ce–Zr oxide-supported Ni catalysts in the steam reforming of meta-cresol as a model component for bio-derived tar. ChemCatChem 7:468–478. doi:10.1002/cctc.201402857 CrossRef Hoang TMC, Rao NK, Lefferts L, Seshan K (2015) Investigation of Ce–Zr oxide-supported Ni catalysts in the steam reforming of meta-cresol as a model component for bio-derived tar. ChemCatChem 7:468–478. doi:10.​1002/​cctc.​201402857 CrossRef
16.
go back to reference Ignatchenko AV (2011) Density functional theory study of carboxylic acids adsorption and enolization on monoclinic zirconia surfaces. J Phys Chem C 115:16012–16018. doi:10.1021/jp203381h CrossRef Ignatchenko AV (2011) Density functional theory study of carboxylic acids adsorption and enolization on monoclinic zirconia surfaces. J Phys Chem C 115:16012–16018. doi:10.​1021/​jp203381h CrossRef
19.
go back to reference Korhonen ST, Catalayud M, Krause AOI (2008) Stability of hydroxylated (\({\overline{1}}11\)) and (\({\overline{1}}01\)) surfaces of monoclinic zirconia: a combined study by DFT and infrared spectroscopy. J Phys Chem C 112:6469–6476. doi:10.1021/jp8008546 CrossRef Korhonen ST, Catalayud M, Krause AOI (2008) Stability of hydroxylated (\({\overline{1}}11\)) and (\({\overline{1}}01\)) surfaces of monoclinic zirconia: a combined study by DFT and infrared spectroscopy. J Phys Chem C 112:6469–6476. doi:10.​1021/​jp8008546 CrossRef
20.
go back to reference Kouva S, Andersin J, Honkala K, Lehtonen J, Lefferts L, Kanervo J (2014) Water and carbon oxides on monoclinic zirconia: experimental and computational insights. Phys Chem Chem Phys 16:20650–20664. doi:10.1039/c4cp02742f CrossRef Kouva S, Andersin J, Honkala K, Lehtonen J, Lefferts L, Kanervo J (2014) Water and carbon oxides on monoclinic zirconia: experimental and computational insights. Phys Chem Chem Phys 16:20650–20664. doi:10.​1039/​c4cp02742f CrossRef
21.
go back to reference Kouva S, Honkala K, Lefferts L, Kanervo J (2015) Review: monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catal Sci Technol 5:3473–3490. doi:10.1039/C5CY00330J CrossRef Kouva S, Honkala K, Lefferts L, Kanervo J (2015) Review: monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catal Sci Technol 5:3473–3490. doi:10.​1039/​C5CY00330J CrossRef
26.
go back to reference Pacchioni G (2014) Ketonization of carboxylic acids in biomass conversion over TiO\(_{2}\) and ZrO\(_{2}\) surfaces: a DFT perspective. ACS Catal 4:2874–2888. doi:10.1021/cs500791w CrossRef Pacchioni G (2014) Ketonization of carboxylic acids in biomass conversion over TiO\(_{2}\) and ZrO\(_{2}\) surfaces: a DFT perspective. ACS Catal 4:2874–2888. doi:10.​1021/​cs500791w CrossRef
30.
go back to reference Piskorz W, Grybos J, Zasada F, Cristol S, Paul JF, Adamski A, Sojka Z (2011) Periodic DFT and atomistic thermodynamic modeling of the surface hydration equilibria and morphology of monoclinic ZrO\(_{2}\) nanocrystals. J Phys Chem C 115:24274–24286CrossRef Piskorz W, Grybos J, Zasada F, Cristol S, Paul JF, Adamski A, Sojka Z (2011) Periodic DFT and atomistic thermodynamic modeling of the surface hydration equilibria and morphology of monoclinic ZrO\(_{2}\) nanocrystals. J Phys Chem C 115:24274–24286CrossRef
31.
go back to reference Piskorz W, Grybos J, Zasada F, Zapala P, Cristol S, Paul JF, Sojka Z (2012) Periodic DFT study of the tetragonal ZrO\(_{2}\) nanocrystals: equilibrium morphology modeling and atomistic surface hydration thermodynamics. J Phys Chem C 116:19307–19320. doi:10.1021/jp3050059 CrossRef Piskorz W, Grybos J, Zasada F, Zapala P, Cristol S, Paul JF, Sojka Z (2012) Periodic DFT study of the tetragonal ZrO\(_{2}\) nanocrystals: equilibrium morphology modeling and atomistic surface hydration thermodynamics. J Phys Chem C 116:19307–19320. doi:10.​1021/​jp3050059 CrossRef
36.
go back to reference Reuter K, Scheffler M (2003) First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys Rev B 90(046):103. doi:10.1103/PhysRevLett.90.046103 Reuter K, Scheffler M (2003) First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys Rev B 90(046):103. doi:10.​1103/​PhysRevLett.​90.​046103
39.
go back to reference Sangalli D, Lamperti A, Cianci E, Ciprian R, Perego M, Debernardi A (2013) Role of oxygen vacancies on the structure and density of states of iron-doped zirconia. Phys Rev B 87(085):206. doi:10.1103/PhysRevB.87.085206 Sangalli D, Lamperti A, Cianci E, Ciprian R, Perego M, Debernardi A (2013) Role of oxygen vacancies on the structure and density of states of iron-doped zirconia. Phys Rev B 87(085):206. doi:10.​1103/​PhysRevB.​87.​085206
40.
go back to reference Syzgantseva OA, Calatayud M, Minot C (2012) Revealing the surface reactivity of zirconia by periodic DFT calculations. J Phys Chem C 116:6636–6644. doi:10.1021/jp209898q CrossRef Syzgantseva OA, Calatayud M, Minot C (2012) Revealing the surface reactivity of zirconia by periodic DFT calculations. J Phys Chem C 116:6636–6644. doi:10.​1021/​jp209898q CrossRef
42.
go back to reference Yashima M, Hirose T, Katano S, Suzuki Y, Kakihana M, Yoshimura M (1995) Structural changes of ZrO\(_{2}\)–CeO\(_{2}\) solid solutions around the monoclinic–tetragonal phase boundary. Phys Rev B 51:8018–8025. doi:10.1103/PhysRevB.51.8018 CrossRef Yashima M, Hirose T, Katano S, Suzuki Y, Kakihana M, Yoshimura M (1995) Structural changes of ZrO\(_{2}\)–CeO\(_{2}\) solid solutions around the monoclinic–tetragonal phase boundary. Phys Rev B 51:8018–8025. doi:10.​1103/​PhysRevB.​51.​8018 CrossRef
43.
go back to reference Youssef M, Yildiz B (2012) Intrinsic point-defect equilibria in tetragonal ZrO\(_{2}{\text{: }}\) density functional theory analysis with finite-temperature effects. Phys Rev B 86(114):109. doi:10.1103/PhysRevB.86.144109 Youssef M, Yildiz B (2012) Intrinsic point-defect equilibria in tetragonal ZrO\(_{2}{\text{: }}\) density functional theory analysis with finite-temperature effects. Phys Rev B 86(114):109. doi:10.​1103/​PhysRevB.​86.​144109
Metadata
Title
Understanding Structure and Stability of Monoclinic Zirconia Surfaces from First-Principles Calculations
Authors
Andrey S. Bazhenov
Karoliina Honkala
Publication date
15-09-2016
Publisher
Springer US
Published in
Topics in Catalysis / Issue 6-7/2017
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-016-0701-0

Other articles of this Issue 6-7/2017

Topics in Catalysis 6-7/2017 Go to the issue

Preface

Preface

Premium Partners